Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Eckert is active.

Publication


Featured researches published by Anne Eckert.


Cell | 2010

Dendritic Function of Tau Mediates Amyloid-β Toxicity in Alzheimer's Disease Mouse Models

Lars M. Ittner; Yazi D. Ke; Fabien Delerue; Mian Bi; Amadeus Gladbach; Janet van Eersel; Heidrun Wölfing; Billy Chieng; MacDonald J. Christie; Ian A. Napier; Anne Eckert; Matthias Staufenbiel; Edna C. Hardeman; Jürgen Götz

Alzheimers disease (AD) is characterized by amyloid-beta (Abeta) and tau deposition in brain. It has emerged that Abeta toxicity is tau dependent, although mechanistically this link remains unclear. Here, we show that tau, known as axonal protein, has a dendritic function in postsynaptic targeting of the Src kinase Fyn, a substrate of which is the NMDA receptor (NR). Missorting of tau in transgenic mice expressing truncated tau (Deltatau) and absence of tau in tau(-/-) mice both disrupt postsynaptic targeting of Fyn. This uncouples NR-mediated excitotoxicity and hence mitigates Abeta toxicity. Deltatau expression and tau deficiency prevent memory deficits and improve survival in Abeta-forming APP23 mice, a model of AD. These deficits are also fully rescued with a peptide that uncouples the Fyn-mediated interaction of NR and PSD-95 in vivo. Our findings suggest that this dendritic role of tau confers Abeta toxicity at the postsynapse with direct implications for pathogenesis and treatment of AD.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice

Virginie Rhein; Xiaomin Song; Andreas Wiesner; Lars M. Ittner; Ginette Baysang; Fides Meier; Laurence Ozmen; Horst Bluethmann; Stefan Dröse; Ulrich Brandt; Egemen Savaskan; Christian Czech; Jürgen Götz; Anne Eckert

Alzheimers disease (AD) is characterized by amyloid-beta (Aβ)-containing plaques, neurofibrillary tangles, and neuron and synapse loss. Tangle formation has been reproduced in P301L tau transgenic pR5 mice, whereas APPswPS2N141I double-transgenic APP152 mice develop Aβ plaques. Cross-breeding generates triple transgenic (tripleAD) mice that combine both pathologies in one model. To determine functional consequences of the combined Aβ and tau pathologies, we performed a proteomic analysis followed by functional validation. Specifically, we obtained vesicular preparations from tripleAD mice, the parental strains, and nontransgenic mice, followed by the quantitative mass-tag labeling proteomic technique iTRAQ and mass spectrometry. Within 1,275 quantified proteins, we found a massive deregulation of 24 proteins, of which one-third were mitochondrial proteins mainly related to complexes I and IV of the oxidative phosphorylation system (OXPHOS). Notably, deregulation of complex I was tau dependent, whereas deregulation of complex IV was Aβ dependent, both at the protein and activity levels. Synergistic effects of Aβ and tau were evident in 8-month-old tripleAD mice as only they showed a reduction of the mitochondrial membrane potential at this early age. At the age of 12 months, the strongest defects on OXPHOS, synthesis of ATP, and reactive oxygen species were exhibited in the tripleAD mice, again emphasizing synergistic, age-associated effects of Aβ and tau in perishing mitochondria. Our study establishes a molecular link between Aβ and tau protein in AD pathology in vivo, illustrating the potential of quantitative proteomics.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Aβ production in APP23 transgenic mice

Thomas A. Bayer; Stephanie Schäfer; Andreas Simons; André Kemmling; Thomas Kamer; Ralf Tepest; Anne Eckert; Katrin Schüssel; Oliver Eikenberg; Christine Sturchler-Pierrat; Dorothee Abramowski; Matthias Staufenbiel; Gerd Multhaup

The Cu-binding β-amyloid precursor protein (APP), and the amyloid Aβ peptide have been proposed to play a role in physiological metal regulation. There is accumulating evidence of an unbalanced Cu homeostasis with a causative or diagnostic link to Alzheimers disease. Whereas elevated Cu levels are observed in APP knockout mice, APP overexpression results in reduced Cu in transgenic mouse brain. Moreover, Cu induces a decrease in Aβ levels in APP-transfected cells in vitro. To investigate the influence of bioavailable Cu, transgenic APP23 mice received an oral treatment with Cu-supplemented sucrose-sweetened drinking water (1). Chronic APP overexpression per se reduced superoxide dismutase 1 activity in transgenic mouse brain, which could be restored to normal levels after Cu treatment (2). A significant increase of brain Cu indicated its bioavailability on Cu treatment in APP23 mice, whereas Cu levels remained unaffected in littermate controls (3). Cu treatment lowered endogenous CNS Aβ before a detectable reduction of amyloid plaques. Thus, APP23 mice reveal APP-induced alterations linked to Cu homeostasis, which can be reversed by addition of dietary Cu.


Neurobiology of Aging | 2009

Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice.

Susanne Hauptmann; Isabel Scherping; Stefan Dröse; Ulrich Brandt; Kathrin Schulz; Marina Jendrach; Kristina Leuner; Anne Eckert; Walter E. Müller

Recent evidence suggests mitochondrial dysfunction as a common early pathomechanism in Alzheimers disease integrating genetic factors related to enhanced amyloid-beta (Ass) production and tau-hyperphosphorylation with aging, as the most relevant sporadic risk factor. To further clarify the synergistic effects of aging and Ass pathology, we used isolated mitochondria of double Swedish and London mutant APP transgenic mice and of non-tg littermates. Pronounced mitochondrial dysfunction in adult Thy-1 APP mice, such as a drop of mitochondrial membrane potential and reduced ATP-levels already appeared at 3 months when elevated intracellular but not extracellular Ass deposits are present. Mitochondrial dysfunction was associated with higher levels of reactive oxygen species, an altered Bcl-xL/Bax ratio and reduction of COX IV activity. We observed significant decreases in state 3 respiration and FCCP-uncoupled respiration in non-tg mice after treatment with extracellular Ass. Similar deficits were seen only in aged Thy-1 APP mice, probably due to compensation within the respiratory chain in young animals. We conclude that Ass dependent mitochondrial dysfunction starts already at 3 months in this AD model before extracellular deposition of Ass and progression accelerates substantially with aging.


Journal of Biological Chemistry | 2004

Amyloid-beta induced changes in nitric oxide production and mitochondrial activity lead to apoptosis

Uta Keil; Astrid Bonert; Celio A. Marques; Isabel Scherping; Jörg Weyermann; Joanna B. Strosznajder; Franz Müller-Spahn; Christian Haass; Christian Czech; Laurent Pradier; Walter E. Müller; Anne Eckert

Increasing evidence suggests an important role of mitochondrial dysfunction in the pathogenesis of Alzheimers disease. Thus, we investigated the effects of acute and chronic exposure to increasing concentrations of amyloid β (Aβ) on mitochondrial function and nitric oxide (NO) production in vitro and in vivo. Our data demonstrate that PC12 cells and human embryonic kidney cells bearing the Swedish double mutation in the amyloid precursor protein gene (APPsw), exhibiting substantial Aβ levels, have increased NO levels and reduced ATP levels. The inhibition of intracellular Aβ production by a functional γ-secretase inhibitor normalizes NO and ATP levels, indicating a direct involvement of Aβ in these processes. Extracellular treatment of PC12 cells with comparable Aβ concentrations only leads to weak changes, demonstrating the important role of intracellular Aβ. In 3-month-old APP transgenic (tg) mice, which exhibit no plaques but already detectable Aβ levels in the brain, reduced ATP levels can also be observed showing the in vivo relevance of our findings. Moreover, we could demonstrate that APP is present in the mitochondria of APPsw PC12 cells. This presence might be directly involved in the impairment of cytochrome c oxidase activity and depletion of ATP levels in APPsw PC12 cells. In addition, APPsw human embryonic kidney cells, which produce 20-fold increased Aβ levels compared with APPsw PC12 cells, and APP tg mice already show a significantly decreased mitochondrial membrane potential under basal conditions. We suggest a hypothetical sequence of pathogenic steps linking mutant APP expression and amyloid production with enhanced NO production and mitochondrial dysfunction finally leading to cell death.


Biochemical Pharmacology | 2003

Mitochondrial dysfunction, apoptotic cell death, and Alzheimer’s disease

Anne Eckert; Uta Keil; Celio A. Marques; Astrid Bonert; Claudia Frey; Katrin Schüssel; Walter E. Müller

Being major sources of reactive oxygen species (ROS), mitochondrial structures are exposed to high concentrations of ROS and might therefore be particularly susceptible to oxidative injury. Mitochondrial damage may play a pivotal role in the cell death decision. Bolstered evidence indicates that mitochondrial abnormalities might be part of the spectrum of chronic oxidative stress occurring in Alzheimers disease (AD) finally contributing to synaptic failure and neuronal degeneration. Accumulation and oligomerization of amyloid beta (Abeta) is also thought to play a central role in the pathogenesis of this disease by probably directly leading to mitochondrial dysfunction. Moreover, numerous lines of findings indicate increased susceptibility to apoptotic cell death and increased oxidative damage as common features in neurons from sporadic AD patients but also from familial AD (FAD) cases. Here we provide a summary of recent work demonstrating some key abnormalities that may initiate and promote pathological events in AD. Finally, we emphasize a hypothetical sequence of the pathogenic steps linking sporadic AD, FAD, and Abeta production with mitochondrial dysfunction, caspase pathway, and neuronal loss.


Molecular Neurobiology | 2010

Mitochondrial Dysfunction: Common Final Pathway in Brain Aging and Alzheimer’s Disease—Therapeutic Aspects

Walter E. Müller; Anne Eckert; Christopher Kurz; Gunter P. Eckert; Kristina Leuner

As a fully differentiated organ, our brain is very sensitive to cumulative oxidative damage of proteins, lipids, and DNA occurring during normal aging because of its high energy metabolism and the relative low activity of antioxidative defense mechanisms. As a major consequence, perturbations of energy metabolism including mitochondrial dysfunction, alterations of signaling mechanisms and of gene expression culminate in functional deficits. With the increasing average life span of humans, age-related cognitive disorders such as Alzheimer’s disease (AD) are a major health concern in our society. Age-related mitochondrial dysfunction underlies most neurodegenerative diseases, where it is potentiated by disease-specific factors. AD is characterized by two major histopathological hallmarks, initially intracellular and with the progression of the disease extracellular accumulation of oligomeric and fibrillar β-amyloid peptides and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. In this review, we focus on findings in AD animal and cell models indicating that these histopathological alterations induce functional deficits of the respiratory chain complexes and therefore consecutively result in mitochondrial dysfunction and oxidative stress. These parameters lead synergistically with the alterations of the brain aging process to typical signs of neurodegeneration in the later state of the disease, including synaptic dysfunction, loss of synapses and neurites, and finally neuronal loss. We suggest that mitochondrial protection and subsequent reduction of oxidative stress are important targets for prevention and long-term treatment of early stages of AD.


Journal of Pineal Research | 2005

Reduced hippocampal MT2 melatonin receptor expression in Alzheimer's disease

Egemen Savaskan; Mohammed A. Ayoub; Rivka Ravid; Debora Angeloni; Franco Fraschini; Fides Meier; Anne Eckert; Franz Müller-Spahn; Ralf Jockers

Abstract:  The aim of the present study was to identify the distribution of the second melatonin receptor (MT2) in the human hippocampus of elderly controls and Alzheimers disease (AD) patients. This is the first report of immunohistochemical MT2 localization in the human hippocampus both in control and AD cases. The specificity of the MT2 antibody was ascertained by fluorescence microscopy using the anti‐MT2 antibody in HEK 293 cells expressing recombinant MT2, in immunoblot experiments on membranes from MT2 expressing cells, and, finally, by immunoprecipitation experiments of the native MT2. MT2 immunoreactivity was studied in the hippocampus of 16 elderly control and 16 AD cases. In controls, MT2 was localized in pyramidal neurons of the hippocampal subfields CA1‐4 and in some granular neurons of the stratum granulosum. The overall intensity of the MT2 staining was distinctly decreased in AD cases. The results indicate that MT2 may be involved in mediating the effects of melatonin in the human hippocampus, and this mechanism may be heavily impaired in AD.


International Journal of Alzheimer's Disease | 2011

Amyloid-Beta Interaction with Mitochondria

Lucia Pagani; Anne Eckert

Mitochondrial dysfunction is a hallmark of amyloid-beta(Aβ)-induced neuronal toxicity in Alzheimers disease (AD). The recent emphasis on the intracellular biology of Aβ and its precursor protein (AβPP) has led researchers to consider the possibility that mitochondria-associated and/or intramitochondrial Aβ may directly cause neurotoxicity. In this paper, we will outline current knowledge of the intracellular localization of both Aβ and AβPP addressing the question of how Aβ can access mitochondria. Moreover, we summarize evidence from AD postmortem brain as well as cellular and animal AD models showing that Aβ triggers mitochondrial dysfunction through a number of pathways such as impairment of oxidative phosphorylation, elevation of reactive oxygen species (ROS) production, alteration of mitochondrial dynamics, and interaction with mitochondrial proteins. In particular, we focus on Aβ interaction with different mitochondrial targets including the outer mitochondrial membrane, intermembrane space, inner mitochondrial membrane, and the matrix. Thus, this paper establishes a modified model of the Alzheimer cascade mitochondrial hypothesis.


Journal of Neural Transmission | 2001

ROS generation, lipid peroxidation and antioxidant enzyme activities in the aging brain

Silke Leutner; Anne Eckert; Walter E. Müller

Summary. The objective of this study was to determine the specific relationship between brain aging and changes in the level of oxidative stress, lipid peroxidation (LPO) and in the activities of antioxidant enzymes. We used four different age groups (2–3 months, 10–11 months, 16–17 months and 20–21 months) which represented young adults, adults, beginning senescence and senescence, respectively. Basal levels of LPO products measured as malondialdehyde increased gradually with age in mouse brain homogenate. The extent of stimulated LPO products, however, was clearly decreased in the brain of adult mice compared to young mice but increased again in the brain of senescent mice. We could not detect any appreciable age-related changes in the basal as well as in stimulated levels of ROS measured with the fluorescent dyes dichlorofluorescein and dihydrorhodamine123. Nevertheless, there was a significant delay in the time course of ROS-generation in brain cells from old mice. The activities of the antioxidant enzymes CuZn-superoxide dismutase and glutathione reductase increased with age whereas glutathione peroxidase remained unchanged. On the basis of our present findings, we envisage a potential model that integrates several divergent findings described in the literature about the role of oxidative stress in brain aging.

Collaboration


Dive into the Anne Eckert's collaboration.

Top Co-Authors

Avatar

Walter E. Müller

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Jürgen Götz

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uta Keil

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabel Scherping

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Christian Czech

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Susanne Hauptmann

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge