Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Eichmann is active.

Publication


Featured researches published by Anne Eichmann.


Nature | 2008

Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation

Tuomas Tammela; Georgia Zarkada; Elisabet Wallgard; Aino Murtomäki; Steven Suchting; Maria Wirzenius; Marika Waltari; Mats Hellström; Tibor Schomber; Reetta Peltonen; Catarina Freitas; Antonio Duarte; Helena Isoniemi; Pirjo Laakkonen; Gerhard Christofori; Seppo Ylä-Herttuala; Bronislaw Pytowski; Anne Eichmann; Christer Betsholtz; Kari Alitalo

Angiogenesis, the growth of new blood vessels from pre-existing vasculature, is a key process in several pathological conditions, including tumour growth and age-related macular degeneration. Vascular endothelial growth factors (VEGFs) stimulate angiogenesis and lymphangiogenesis by activating VEGF receptor (VEGFR) tyrosine kinases in endothelial cells. VEGFR-3 (also known as FLT-4) is present in all endothelia during development, and in the adult it becomes restricted to the lymphatic endothelium. However, VEGFR-3 is upregulated in the microvasculature of tumours and wounds. Here we demonstrate that VEGFR-3 is highly expressed in angiogenic sprouts, and genetic targeting of VEGFR-3 or blocking of VEGFR-3 signalling with monoclonal antibodies results in decreased sprouting, vascular density, vessel branching and endothelial cell proliferation in mouse angiogenesis models. Stimulation of VEGFR-3 augmented VEGF-induced angiogenesis and sustained angiogenesis even in the presence of VEGFR-2 (also known as KDR or FLK-1) inhibitors, whereas antibodies against VEGFR-3 and VEGFR-2 in combination resulted in additive inhibition of angiogenesis and tumour growth. Furthermore, genetic or pharmacological disruption of the Notch signalling pathway led to widespread endothelial VEGFR-3 expression and excessive sprouting, which was inhibited by blocking VEGFR-3 signals. Our results implicate VEGFR-3 as a regulator of vascular network formation. Targeting VEGFR-3 may provide additional efficacy for anti-angiogenic therapies, especially towards vessels that are resistant to VEGF or VEGFR-2 inhibitors.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching

Steven Suchting; Catarina Freitas; Ferdinand le Noble; Rui Benedito; Christiane Bréant; Antonio Duarte; Anne Eichmann

Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using γ-secretase inhibitor revealed a striking vascular phenotype, with greatly increased numbers of filopodia-extending endothelial tip cells and increased expression of tip cell marker genes compared with controls. Filopodia extension in dll4+/− retinal vessels required the vascular growth factor VEGF and was inhibited when VEGF signaling was blocked. Although VEGF expression was not significantly altered in dll4+/− retinas, dll4+/− vessels showed increased expression of VEGF receptor 2 and decreased expression of VEGF receptor 1 compared with wild-type, suggesting they could be more responsive to VEGF stimulation. In addition, expression of dll4 in wild-type tip cells was itself decreased when VEGF signaling was blocked, indicating that dll4 may act downstream of VEGF as a “brake” on VEGF-mediated angiogenic sprouting. Taken together, these data reveal Dll4 as a negative regulator of vascular sprouting and vessel branching that is required for normal vascular network formation during development.


Proceedings of the National Academy of Sciences of the United States of America | 2001

A model for gene therapy of human hereditary lymphedema

Marika J. Karkkainen; Anne Saaristo; Lotta Jussila; Kaisa Karila; Elizabeth C. Lawrence; Katri Pajusola; Hansruedi Büeler; Anne Eichmann; Risto A. Kauppinen; Mikko I. Kettunen; Seppo Ylä-Herttuala; David N. Finegold; Robert E. Ferrell; Kari Alitalo

Primary human lymphedema (Milroys disease), characterized by a chronic and disfiguring swelling of the extremities, is associated with heterozygous inactivating missense mutations of the gene encoding vascular endothelial growth factor C/D receptor (VEGFR-3). Here, we describe a mouse model and a possible treatment for primary lymphedema. Like the human patients, the lymphedema (Chy) mice have an inactivating Vegfr3 mutation in their germ line, and swelling of the limbs because of hypoplastic cutaneous, but not visceral, lymphatic vessels. Neuropilin (NRP)-2 bound VEGF-C and was expressed in the visceral, but not in the cutaneous, lymphatic endothelia, suggesting that it may participate in the pathogenesis of lymphedema. By using virus-mediated VEGF-C gene therapy, we were able to generate functional lymphatic vessels in the lymphedema mice. Our results suggest that growth factor gene therapy is applicable to human lymphedema and provide a paradigm for other diseases associated with mutant receptors.


Nature | 2004

The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system

Xiaowel Lu; Ferdinand le Noble; Li Yuan; Quingjan Jiang; Benjamin de Lafarge; Daisuke Sugiyama; Christiane Bréant; Filip Claes; Frederik De Smet; Jean Leon Thomas; Monica Autiero; Peter Carmeliet; Marc Tessier-Lavigne; Anne Eichmann

Blood vessels and nerves are complex, branched structures that share a high degree of anatomical similarity. Guidance of vessels and nerves has to be exquisitely regulated to ensure proper wiring of both systems. Several regulators of axon guidance have been identified and some of these are also expressed in endothelial cells; however, the extent to which their guidance functions are conserved in the vascular system is still incompletely understood. We show here that the repulsive netrin receptor UNC5B is expressed by endothelial tip cells of the vascular system. Disruption of the Unc5b gene in mice, or of Unc5b or netrin-1a in zebrafish, leads to aberrant extension of endothelial tip cell filopodia, excessive vessel branching and abnormal navigation. Netrin-1 causes endothelial filopodial retraction, but only when UNC5B is present. Thus, UNC5B functions as a repulsive netrin receptor in endothelial cells controlling morphogenesis of the vascular system.


Development | 2003

Flow regulates arterial-venous differentiation in the chick embryo yolk sac

Ferdinand le Noble; Delphine Moyon; Luc Pardanaud; Li Yuan; Valentin Djonov; Robert Matthijsen; Christiane Bréant; Vincent Fleury; Anne Eichmann

Formation of the yolk sac vascular system and its connection to the embryonic circulation is crucial for embryo survival in both mammals and birds. Most mice with mutations in genes involved in vascular development die because of a failure to establish this circulatory loop. Surprisingly, formation of yolk sac arteries and veins has not been well described in the recent literature. Using time-lapse video-microscopy, we have studied arterial-venous differentiation in the yolk sac of chick embryos. Immediately after the onset of perfusion, the yolk sac exhibits a posterior arterial and an anterior venous pole, which are connected to each other by cis-cis endothelial interactions. To form the paired and interlaced arterial-venous pattern characteristic of mature yolk sac vessels, small caliber vessels of the arterial domain are selectively disconnected from the growing arterial tree and subsequently reconnected to the venous system, implying that endothelial plasticity is needed to fashion normal growth of veins. Arterial-venous differentiation and patterning are controlled by hemodynamic forces, as shown by flow manipulation and in situ hybridization with arterial markers ephrinB2 and neuropilin 1, which show that expression of both mRNAs is not genetically determined but plastic and regulated by flow. In vivo application of ephrinB2 or EphB4 in the developing yolk sac failed to produce any morphological effects. By contrast, ephrinB2 and EphB4 application in the allantois of older embryos resulted in the rapid formation of arterial-venous shunts. In conclusion, we show that flow shapes the global patterning of the arterial tree and regulates the activation of the arterial markers ephrinB2 and neuropilin 1.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation

Jennifer L. Pluznick; Ryan J. Protzko; Haykanush Gevorgyan; Zita Peterlin; Arnold Sipos; Jinah Han; Isabelle Brunet; La Xiang Wan; Federico E. Rey; Tong Wang; Stuart Firestein; Masashi Yanagisawa; Jeffrey I. Gordon; Anne Eichmann; Janos Peti-Peterdi; Michael J. Caplan

Olfactory receptors are G protein-coupled receptors that mediate olfactory chemosensation and serve as chemosensors in other tissues. We find that Olfr78, an olfactory receptor expressed in the kidney, responds to short chain fatty acids (SCFAs). Olfr78 is expressed in the renal juxtaglomerular apparatus, where it mediates renin secretion in response to SCFAs. In addition, both Olfr78 and G protein-coupled receptor 41 (Gpr41), another SCFA receptor, are expressed in smooth muscle cells of small resistance vessels. Propionate, a SCFA shown to induce vasodilation ex vivo, produces an acute hypotensive response in wild-type mice. This effect is differentially modulated by disruption of Olfr78 and Gpr41 expression. SCFAs are end products of fermentation by the gut microbiota and are absorbed into the circulation. Antibiotic treatment reduces the biomass of the gut microbiota and elevates blood pressure in Olfr78 knockout mice. We conclude that SCFAs produced by the gut microbiota modulate blood pressure via Olfr78 and Gpr41.


Cold Spring Harbor Perspectives in Biology | 2010

Axon Guidance Molecules in Vascular Patterning

Ralf H. Adams; Anne Eichmann

Endothelial cells (ECs) form extensive, highly branched and hierarchically organized tubular networks in vertebrates to ensure the proper distribution of molecular and cellular cargo in the vertebrate body. The growth of this vascular system during development, tissue repair or in disease conditions involves the sprouting, migration and proliferation of endothelial cells in a process termed angiogenesis. Surprisingly, specialized ECs, so-called tip cells, which lead and guide endothelial sprouts, share many feature with another guidance structure, the axonal growth cone. Tip cells are motile, invasive and extend numerous filopodial protrusions sensing growth factors, extracellular matrix and other attractive or repulsive cues in their tissue environment. Axonal growth cones and endothelial tip cells also respond to signals belonging to the same molecular families, such as Slits and Roundabouts, Netrins and UNC5 receptors, Semaphorins, Plexins and Neuropilins, and Eph receptors and ephrin ligands. Here we summarize fundamental principles of angiogenic growth, the selection and function of tip cells and the underlying regulation by guidance cues, the Notch pathway and vascular endothelial growth factor signaling.


Blood | 2010

Identification and functional analysis of endothelial tip cell–enriched genes

Raquel del Toro; Claudia Prahst; Thomas Mathivet; Geraldine Siegfried; Joshua S. Kaminker; Bruno Larrivée; Christiane Bréant; Antonio Duarte; Nobuyuki Takakura; Akiyoshi Fukamizu; Josef M. Penninger; Anne Eichmann

Sprouting of developing blood vessels is mediated by specialized motile endothelial cells localized at the tips of growing capillaries. Following behind the tip cells, endothelial stalk cells form the capillary lumen and proliferate. Expression of the Notch ligand Delta-like-4 (Dll4) in tip cells suppresses tip cell fate in neighboring stalk cells via Notch signaling. In DLL4(+/-) mouse mutants, most retinal endothelial cells display morphologic features of tip cells. We hypothesized that these mouse mutants could be used to isolate tip cells and so to determine their genetic repertoire. Using transcriptome analysis of retinal endothelial cells isolated from DLL4(+/-) and wild-type mice, we identified 3 clusters of tip cell-enriched genes, encoding extracellular matrix degrading enzymes, basement membrane components, and secreted molecules. Secreted molecules endothelial-specific molecule 1, angiopoietin 2, and apelin bind to cognate receptors on endothelial stalk cells. Knockout mice and zebrafish morpholino knockdown of apelin showed delayed angiogenesis and reduced proliferation of stalk cells expressing the apelin receptor APJ. Thus, tip cells may regulate angiogenesis via matrix remodeling, production of basement membrane, and release of secreted molecules, some of which regulate stalk cell behavior.


Nature Cell Biology | 2011

VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling

Tuomas Tammela; Georgia Zarkada; Harri Nurmi; Lars Jakobsson; Krista Heinolainen; Denis Tvorogov; Wei Zheng; Claudio A. Franco; Aino Murtomäki; Evelyn Aranda; Naoyuki Miura; Seppo Ylä-Herttuala; Marcus Fruttiger; Taija Makinen; Anne Eichmann; Jeffrey W. Pollard; Holger Gerhardt; Kari Alitalo

Angiogenesis, the growth of new blood vessels, involves specification of endothelial cells to tip cells and stalk cells, which is controlled by Notch signalling, whereas vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3 have been implicated in angiogenic sprouting. Surprisingly, we found that endothelial deletion of Vegfr3, but not VEGFR-3-blocking antibodies, postnatally led to excessive angiogenic sprouting and branching, and decreased the level of Notch signalling, indicating that VEGFR-3 possesses passive and active signalling modalities. Furthermore, macrophages expressing the VEGFR-3 and VEGFR-2 ligand VEGF-C localized to vessel branch points, and Vegfc heterozygous mice exhibited inefficient angiogenesis characterized by decreased vascular branching. FoxC2 is a known regulator of Notch ligand and target gene expression, and Foxc2+/−;Vegfr3+/− compound heterozygosity recapitulated homozygous loss of Vegfr3. These results indicate that macrophage-derived VEGF-C activates VEGFR-3 in tip cells to reinforce Notch signalling, which contributes to the phenotypic conversion of endothelial cells at fusion points of vessel sprouts.


Journal of Cell Biology | 2010

Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3.

Yunling Xu; Li-li Yuan; Judy Mak; Luc Pardanaud; Maresa Caunt; Ian Kasman; Bruno Larrivée; Raquel del Toro; Steven Suchting; Alexander Medvinsky; Jillian M. Silva; Jian Yang; Jean-Léon Thomas; Alexander W. Koch; Kari Alitalo; Anne Eichmann; Anil Bagri

If neuropilin-2 and the growth factor VEGF-C don’t come together, lymphatic vessels don’t branch apart.

Collaboration


Dive into the Anne Eichmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge