Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne-Emilie Declèves is active.

Publication


Featured researches published by Anne-Emilie Declèves.


Journal of Clinical Investigation | 2013

AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function

Laura L. Dugan; Young Hyun You; Sameh S. Ali; Maggie K. Diamond-Stanic; Satoshi Miyamoto; Anne-Emilie Declèves; Aleksander Y. Andreyev; Tammy Quach; San Ly; Grigory Shekhtman; William Nguyen; Andre Chepetan; Thuy Le; Lin Wang; Ming Xu; Kacie P. Paik; Agnes B. Fogo; Benoit Viollet; Anne N. Murphy; Frank C. Brosius; Robert K. Naviaux; Kumar Sharma

Diabetic microvascular complications have been considered to be mediated by a glucose-driven increase in mitochondrial superoxide anion production. Here, we report that superoxide production was reduced in the kidneys of a steptozotocin-induced mouse model of type 1 diabetes, as assessed by in vivo real-time transcutaneous fluorescence, confocal microscopy, and electron paramagnetic resonance analysis. Reduction of mitochondrial biogenesis and phosphorylation of pyruvate dehydrogenase (PDH) were observed in kidneys from diabetic mice. These observations were consistent with an overall reduction of mitochondrial glucose oxidation. Activity of AMPK, the major energy-sensing enzyme, was reduced in kidneys from both diabetic mice and humans. Mitochondrial biogenesis, PDH activity, and mitochondrial complex activity were rescued by treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). AICAR treatment induced superoxide production and was linked with glomerular matrix and albuminuria reduction in the diabetic kidney. Furthermore, diabetic heterozygous superoxide dismutase 2 (Sod2(+/-)) mice had no evidence of increased renal disease, and Ampka2(-/-) mice had increased albuminuria that was not reduced with AICAR treatment. Reduction of mitochondrial superoxide production with rotenone was sufficient to reduce AMPK phosphorylation in mouse kidneys. Taken together, these results demonstrate that diabetic kidneys have reduced superoxide and mitochondrial biogenesis and activation of AMPK enhances superoxide production and mitochondrial function while reducing disease activity.


Investigative Radiology | 2011

Ultrasound Molecular Imaging of Tumor Angiogenesis with an Integrin Targeted Microbubble Contrast Agent

Christopher R. Anderson; Xiaowen Hu; Hua Zhang; José L. Tlaxca; Anne-Emilie Declèves; Robert Houghtaling; Kumar Sharma; Michael B. Lawrence; Katherine W. Ferrara; Joshua J. Rychak

Rationale and Objectives:Ultrasound molecular imaging is an emerging technique for sensitive detection of intravascular targets. Molecular imaging of angiogenesis has strong potential for both clinical use and as a research tool in tumor biology and the development of antiangiogenic therapies. Our objectives are to develop a robust ultrasound contrast agent platform using microbubbles (MB) to which targeting ligands can be conjugated by biocompatible, covalent conjugation chemistry, and to develop a pure low mechanical index (MI) imaging processing method and corresponding quantification method. The MB and the imaging methods were evaluated in a mouse model of breast cancer in vivo. Materials and Methods:We used a cyclic arginine-glycine-aspartic acid (cRGD) pentapeptide containing a terminal cysteine group conjugated to the surface of MB bearing pyridyldithio-propionate (PDP) for targeting &agr;v&bgr;3 integrins. As negative controls, MB without a ligand or MB bearing a scrambled sequence (cRAD) were prepared. To enable characterization of peptides bound to MB surfaces, the cRGD peptide was labeled with FITC and detected by plate fluorometry, flow cytometry, and fluorescence microscopy. Targeted adhesion of cRGD-MB was demonstrated in an in vitro flow adhesion assay against recombinant murine &agr;v&bgr;3 integrin protein and &agr;v&bgr;3 integrin-expressing endothelial cells (bEnd.3). The specificity of cRGD-MB for &agr;v&bgr;3 integrin was demonstrated by treating bEnd.3 EC with a blocking antibody. A murine model of mammary carcinoma was used to assess targeted adhesion and ultrasound molecular imaging in vivo. The targeted MB were visualized using a low MI contrast imaging pulse sequence, and quantified by intensity normalization and 2-dimensional Fourier transform analysis. Results:The cRGD ligand concentration on the MB surface was ∼8.2 × 106 molecules per MB. At a wall shear stress of 1.0 dynes/cm2, cRGD-MB exhibited 5-fold higher adhesion to immobilized recombinant &agr;v&bgr;3 integrin relative to nontargeted MB and cRAD-MB controls. Similarly, cRGD-MB showed significantly greater adhesion to bEnd.3 EC compared with nontargeted MB and cRAD-MB. In addition, cRGD-MB, but not nontargeted MB or cRAD-MB, showed significantly enhanced contrast signals with a high tumor-to-background ratio. The adhesion of cRGD-MB to bEnd.3 was reduced by 80% after using anti-&agr;v monoclonal antibody to treat bEnd.3. The normalized image intensity amplitude was ∼0.8, 7 minutes after the administration of cRGD-MB relative to the intensity amplitude at the time of injection, while the spatial variance in image intensity improved the detection of bound agents. The accumulation of cRGD-MB was blocked by preadministration with an anti-&agr;v blocking antibody. Conclusions:The results demonstrate the functionality of a novel MB contrast agent covalently coupled to an RGD peptide for ultrasound molecular imaging of &agr;v&bgr;3 integrin and the feasibility of quantitative molecular ultrasound imaging with a low MI.


Journal of The American Society of Nephrology | 2011

AMPK Mediates the Initiation of Kidney Disease Induced by a High-Fat Diet

Anne-Emilie Declèves; Anna V. Mathew; Robyn Cunard; Kumar Sharma

The mechanisms underlying the association between obesity and progressive renal disease are not well understood. Exposure to a high-fat diet decreases levels of the cellular energy sensor AMPK in many organs, including the kidney, but whether AMPK contributes to the pathophysiology of kidney disease induced by a high-fat diet is unknown. In this study, we randomly assigned C57BL/6J mice to a standard or high-fat diet. After 1 week, mice fed a high-fat diet exhibited an increase in body weight, renal hypertrophy, an increase in urine H(2)O(2) and urine MCP-1, and a decrease in circulating adiponectin levels and renal AMPK activity. Urine ACR progressively increased after 4 weeks of a high-fat diet. After 12 weeks, kidneys of mice fed a high-fat diet demonstrated a marked increase in markers of fibrosis and inflammation, and AMPK activity remained significantly suppressed. To determine whether inhibition of AMPK activity explained these renal effects, we administered an AMPK activator along with a high-fat diet for 1 week. Although AMPK activation did not abrogate the weight gain, it reduced the renal hypertrophy, urine H(2)O(2), and urine and renal MCP-1. In vitro, AMPK activation completely inhibited the induction of MCP-1 by palmitic acid in mesangial cells. In conclusion, these data suggest that the energy sensor AMPK mediates the early renal effects of a high-fat diet.


Nature Reviews Nephrology | 2010

New pharmacological treatments for improving renal outcomes in diabetes

Anne-Emilie Declèves; Kumar Sharma

Diabetic nephropathy is the most common and most rapidly growing cause of end-stage renal failure in developed countries. Diabetic nephropathy results from complex interactions between genetic, metabolic and hemodynamic factors. Improvements in our understanding of the pathogenesis of fibrosis associated with diabetic kidney disease have led to the identification of several novel targets for the treatment of diabetic nephropathy. Albuminuria is a useful clinical marker of diabetic nephropathy, as it can be used to predict a decline in renal function. A reduction in albuminuria might not, however, be reflective of a protective effect of therapies focused on ameliorating renal fibrosis. Although new strategies for slowing down the progression of several types of renal disease have emerged, the challenge of arresting the relentless progression of diabetic nephropathy remains. In this Review, we discuss novel pharmacological approaches that aim to improve the renal outcomes of diabetic nephropathy, including the use of direct renin inhibitors and statins. We also discuss the promise of using antifibrotic agents to treat diabetic nephropathy. The need for novel biomarkers of diabetic nephropathy is also highlighted.


Nature Reviews Nephrology | 2014

Novel targets of antifibrotic and anti-inflammatory treatment in CKD

Anne-Emilie Declèves; Kumar Sharma

Chronic kidney disease (CKD) is becoming a worldwide epidemic, driven largely by the dramatic rise in the prevalence of diabetes and obesity. Novel targets and treatments for CKD are, therefore, desperately needed—to both mitigate the burden of this disease in the general population and reduce the necessity for renal replacement therapy in individual patients. This Review highlights new insights into the mechanisms that contribute to CKD, and approaches that might facilitate the development of disease-arresting therapies for CKD. Particular focus is given to therapeutic approaches using antifibrotic agents that target the transforming growth factor β superfamily. In addition, we discuss new insights regarding the roles of vascular calcification, the NADPH oxidase family, and inflammation in the pathogenesis of CKD. We also highlight a new understanding regarding kidney energy sensing pathways (AMPK, sirtuins, and mTOR) in a variety of kidney diseases and how they are linked to inflammation and fibrosis. Finally, exciting new insights have been made into the role of mitochondrial function and mitochondrial biogenesis in relation to progressive kidney disease. Prospective therapeutics based on these findings will hopefully renew hope for clinicians and patients in the near future.


Kidney International | 2014

Regulation of lipid accumulation by AMK-activated kinase in high fat diet–induced kidney injury

Anne-Emilie Declèves; Zarazuela Zolkipli; Joseph Satriano; Lin Wang; Tomohiro Nakayama; Mihael Rogac; Thuy Le; Joëlle Nortier; Marilyn G. Farquhar; Robert K. Naviaux; Kumar Sharma

AMP-activated protein kinase (AMPK) is an important energy sensor that may be critical in regulating renal lipid accumulation. To evaluate the role of AMPK in mediating renal lipid accumulation, C57BL/6J mice were randomized to a standard diet, a high-fat diet, or a high-fat diet plus AICAR (an AMPK activator) for 14 weeks. Renal functional and structural studies along with electron microscopy were performed. Mice given the high-fat diet had proximal tubule injury with the presence of enlarged clear vacuoles, and multilaminar inclusions concurrent with an increase of tissue lipid and overloading of the lysosomal system. The margins of the clear vacuoles were positive for the endolysosomal marker, LAMP1, suggesting lysosome accumulation. Characterization of vesicles by special stains (Oil Red O, Nile Red, Luxol Fast Blue) and by electron microscopy showed they contained onion skin-like accumulations consistent with phospholipids. Moreover, cholesteryl esters and phosphatidylcholine-containing phospholipids were significantly increased in the kidneys of mice on a high-fat diet. AMPK activation with chronic AICAR treatment prevented the clinical and structural effects of high-fat diet. Thus, high-fat diet contributes to a dysfunction of the lysosomal system and altered lipid metabolism characterized by cholesterol and phospholipid accumulation in the kidney. AMPK activation normalizes the changes in renal lipid content despite chronic exposure to lipid challenge.


Advanced Drug Delivery Reviews | 2010

Targeted renal therapies through microbubbles and ultrasound

Leo E. Deelman; Anne-Emilie Declèves; Joshua J. Rychak; Kumar Sharma

Microbubbles and ultrasound enhance the cellular uptake of drugs (including gene constructs) into the kidney. Microbubble induced modifications to the size selectivity of the filtration capacity of the kidney may enable drugs to enter previously inaccessible compartments of the kidney. So far, negative renal side-effects such as capillary bleeding have been reported only in rats, with no apparent damage in larger models such as pigs and rabbits. Although local delivery is accomplished by applying ultrasound only to the target area, efficient delivery using conventional microbubbles has depended on the combined injection of both drugs and microbubbles directly into the renal artery. Conjugation of antibodies to the shell of microbubbles allows for the specific accumulation of microbubbles in the target tissue after intravenous injection. This exciting approach opens new possibilities for both drug delivery and diagnostic ultrasound imaging in the kidney.


Kidney International | 2014

Regulation of lipid accumulation by AMP-activated kinase [corrected] in high fat diet-induced kidney injury.

Anne-Emilie Declèves; Zarazuela Zolkipli; Joseph Satriano; Lin Wang; Tomohiro Nakayama; Mihael Rogac; Thuy Le; Joëlle Nortier; Marilyn G. Farquhar; Robert K. Naviaux; Kumar Sharma

AMP-activated protein kinase (AMPK) is an important energy sensor that may be critical in regulating renal lipid accumulation. To evaluate the role of AMPK in mediating renal lipid accumulation, C57BL/6J mice were randomized to a standard diet, a high-fat diet, or a high-fat diet plus AICAR (an AMPK activator) for 14 weeks. Renal functional and structural studies along with electron microscopy were performed. Mice given the high-fat diet had proximal tubule injury with the presence of enlarged clear vacuoles, and multilaminar inclusions concurrent with an increase of tissue lipid and overloading of the lysosomal system. The margins of the clear vacuoles were positive for the endolysosomal marker, LAMP1, suggesting lysosome accumulation. Characterization of vesicles by special stains (Oil Red O, Nile Red, Luxol Fast Blue) and by electron microscopy showed they contained onion skin-like accumulations consistent with phospholipids. Moreover, cholesteryl esters and phosphatidylcholine-containing phospholipids were significantly increased in the kidneys of mice on a high-fat diet. AMPK activation with chronic AICAR treatment prevented the clinical and structural effects of high-fat diet. Thus, high-fat diet contributes to a dysfunction of the lysosomal system and altered lipid metabolism characterized by cholesterol and phospholipid accumulation in the kidney. AMPK activation normalizes the changes in renal lipid content despite chronic exposure to lipid challenge.


Nephron Experimental Nephrology | 2012

Podocytes express IL-6 and lipocalin 2/ neutrophil gelatinase-associated lipocalin in lipopolysaccharide-induced acute glomerular injury.

Sarah J. Lee; Emily Borsting; Anne-Emilie Declèves; Prabhleen Singh; Robyn Cunard

Background/Aims: Acute kidney injury (AKI) contributes to significant morbidity and mortality in the intensive care unit (ICU). Plasma levels of interleukin (IL)-6 predict the development of AKI and are associated with higher mortality in ICU patients with AKI. Most studies in AKI have focused on the tubulo-interstitium, despite evidence of glomerular involvement. In the following study, our goals were to investigate the expression of IL-6 and its downstream mediators in septic-induced AKI. Methods: Podocytes were treated in vitro with lipopolysaccharide (LPS) and mice were treated with LPS, and we evaluated IL-6 expression by real-time PCR, ELISA and in situ RNA hybridization. Results: Following LPS stimulation, IL-6 is rapidly and highly induced in cultured podocytes and in vivo in glomeruli and infiltrating leukocytes. Surprisingly, in direct response to exogenous IL-6, podocytes produce lipocalin-2/neutrophil gelatinase-associated lipocalin (Lcn2/Ngal). LPS also potently induces Lcn2/Ngal expression in podocytes in culture and in glomeruli in vivo. Intense Lcn2/Ngal expression is also observed in IL-6 knockout mice, suggesting that while IL-6 may be sufficient to induce glomerular Lcn2/Ngal expression, it is not essential. Conclusions: The glomerulus is involved in septic AKI, and we demonstrate that podocytes secrete key mediators of AKI including IL-6 and Lcn2/Ngal.


Nephrology Dialysis Transplantation | 2012

Synthesis and fragmentation of hyaluronan in renal ischaemia

Anne-Emilie Declèves; Nathalie Caron; Virginie Voisin; Alexandre Legrand; Nadine Bouby; Anne Kultti; Markku I. Tammi; Bruno Flamion

BACKGROUND The turnover of hyaluronan (HA), especially the production of low-molecular-weight fragments of HA, was examined in a model of unilateral renal ischaemia-reperfusion (IR) in rats. METHODS HA was extracted from the outer and inner stripe of the outer medulla (OSOM and ISOM) at different times following IR. Its fragmentation was measured using membrane filtration and size-exclusion chromatography. Quantitative reverse transcription-polymerase chain reaction, zymography and immunohistochemistry were used to assess the expression and localization of various forms of HA synthase (HAS) and hyaluronidase (HYAL). Macrophage infiltration was evaluated using immunohistochemistry. RESULTS HA accumulated at Day 1 mostly as high-molecular-weight (HMW) species with an elution profile similar to a reference 2500 kDa HA and at Day 14 mostly as medium- to low-size fragments. Within 1 day, HAS1 messenger RNA was up-regulated > 50- and 35-fold in OSOM and ISOM, respectively. Thereafter, HAS1 tended to normalize, while HAS2 increased steadily. Both synthetic enzymes were localized around tubules and in the interstitium. Conversely, HYAL1, HYAL2 and global hyaluronidase activity were repressed during the first 24 h. The patterns were identical in the OSOM and ISOM despite markedly different amounts of HA at baseline. There was no obvious correlation between HA deposits and macrophage infiltration. CONCLUSIONS In the post-ischaemic kidney, HA starts to accumulate at Day 1 mostly as HMW species. Later on, a large proportion becomes degraded into smaller fragments. This pattern is explained by coordinated changes in the expression of HA synthases and hyaluronidases, especially an early induction of HAS1. The current data open the door to timed pharmacological interventions blocking the production of HA fragments.

Collaboration


Dive into the Anne-Emilie Declèves's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joëlle Nortier

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kumar Sharma

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge