Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Fennell is active.

Publication


Featured researches published by Anne Fennell.


BMC Research Notes | 2012

Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences

Jérôme Grimplet; John L. Van Hemert; Pablo Carbonell-Bejerano; José Díaz-Riquelme; Julie A. Dickerson; Anne Fennell; Mario Pezzotti; José M. Martínez-Zapater

BackgroundThe first draft assembly and gene prediction of the grapevine genome (8X base coverage) was made available to the scientific community in 2007, and functional annotation was developed on this gene prediction. Since then additional Sanger sequences were added to the 8X sequences pool and a new version of the genomic sequence with superior base coverage (12X) was produced.ResultsIn order to more efficiently annotate the function of the genes predicted in the new assembly, it is important to build on as much of the previous work as possible, by transferring 8X annotation of the genome to the 12X version. The 8X and 12X assemblies and gene predictions of the grapevine genome were compared to answer the question, “Can we uniquely map 8X predicted genes to 12X predicted genes?” The results show that while the assemblies and gene structure predictions are too different to make a complete mapping between them, most genes (18,725) showed a one-to-one relationship between 8X predicted genes and the last version of 12X predicted genes. In addition, reshuffled genomic sequence structures appeared. These highlight regions of the genome where the gene predictions need to be taken with caution. Based on the new grapevine gene functional annotation and in-depth functional categorization, twenty eight new molecular networks have been created for VitisNet while the existing networks were updated.ConclusionsThe outcomes of this study provide a functional annotation of the 12X genes, an update of VitisNet, the system of the grapevine molecular networks, and a new functional categorization of genes. Data are available at the VitisNet website (http://www.sdstate.edu/ps/research/vitis/pathways.cfm).


PLOS ONE | 2009

VitisNet: “Omics” Integration through Grapevine Molecular Networks

Jérôme Grimplet; Grant R. Cramer; Julie A. Dickerson; Kathy Mathiason; John L. Van Hemert; Anne Fennell

Background Genomic data release for the grapevine has increased exponentially in the last five years. The Vitis vinifera genome has been sequenced and Vitis EST, transcriptomic, proteomic, and metabolomic tools and data sets continue to be developed. The next critical challenge is to provide biological meaning to this tremendous amount of data by annotating genes and integrating them within their biological context. We have developed and validated a system of Grapevine Molecular Networks (VitisNet). Methodology/Principal Findings The sequences from the Vitis vinifera (cv. Pinot Noir PN40024) genome sequencing project and ESTs from the Vitis genus have been paired and the 39,424 resulting unique sequences have been manually annotated. Among these, 13,145 genes have been assigned to 219 networks. The pathway sets include 88 “Metabolic”, 15 “Genetic Information Processing”, 12 “Environmental Information Processing”, 3 “Cellular Processes”, 21 “Transport”, and 80 “Transcription Factors”. The quantitative data is loaded onto molecular networks, allowing the simultaneous visualization of changes in the transcriptome, proteome, and metabolome for a given experiment. Conclusions/Significance VitisNet uses manually annotated networks in SBML or XML format, enabling the integration of large datasets, streamlining biological functional processing, and improving the understanding of dynamic processes in systems biology experiments. VitisNet is grounded in the Vitis vinifera genome (currently at 8x coverage) and can be readily updated with subsequent updates of the genome or biochemical discoveries. The molecular network files can be dynamically searched by pathway name or individual genes, proteins, or metabolites through the MetNet Pathway database and web-portal at http://metnet3.vrac.iastate.edu/. All VitisNet files including the manual annotation of the grape genome encompassing pathway names, individual genes, their genome identifier, and chromosome location can be accessed and downloaded from the VitisNet tab at http://vitis-dormancy.sdstate.org.


Plant Science | 2002

Dormancy in grape buds: isolation and characterization of catalase cDNA and analysis of its expression following chemical induction of bud dormancy release

Etti Or; Iris Vilozny; Anne Fennell; Yoram Eyal; Aliza Ogrodovitch

The mechanism by which hydrogen cyanamide (HC) exerts its dormancy-breaking effect is not clear, but it has been shown to inactivate catalase in grape buds shortly after its application. Recently, we showed that some potential components in the process leading to dormancy release are induced at the level of gene expression following application of HC. Therefore, we inquired whether changes in catalase activity following HC application are also accompanied by changes in the expression of this gene. We report here the isolation of the first cDNA clone encoding a grape catalase and the characterization of its expression following artificial and natural induction of dormancy release. The sharp decline in the level of catalase transcript, following induction of dormancy release by HC, correlates with earlier findings showing a major decrease in catalase activity in the buds following HC application. This may suggest that HC exert its effect on catalase activity, at least partially, through regulation of catalase gene expression. On the other hand, the expression pattern of catalase in buds throughout the natural dormancy cycle was of a constitutive nature and did not correlate with earlier findings showing decreased activity towards dormancy release. The discrepancy between the data from artificial and natural induction systems is discussed.


Journal of Crop Improvement | 2004

Freezing Tolerance and Injury in Grapevines

Anne Fennell

Summary Grapes, due to their wide distribution, are one of the temperate fruit crops most frequently damaged by freezing temperatures. Freezing injury can result in decreases in yield and substantial economic losses to grape growers, subsequently impacting fruit wholesalers, wineries, distributors, and related industries. Freeze damage is not limited to the northern or southern limits of the production range. Freezing injury can occur in spring, fall, or winter in many of the grape growing regions. An understanding of the mechanisms involved in freezing tolerance, acclimation, and deacclimation in grapevines is needed to match cultivars appropriately with growing sites, improve cultural practices that minimize freezing injury, and aid in breeding and selecting cultivars with improved freezing tolerance. The ability to avoid or tolerate freezing temperatures includes a complex set of traits that is influenced by the inherent genetic characteristics of the grapevine and its interaction with the environment. In the present review, the mechanisms of freezing tolerance in grapevines are summarized and discussed in relation to the influence of genotype, phenological development, and environmental factors.


Proteome Science | 2010

Proteomic analysis of shoot tissue during photoperiod induced growth cessation in V. riparia Michx. grapevines

Kim J Victor; Anne Fennell; Jérôme Grimplet

BackgroundGrowth cessation, cold acclimation and dormancy induction in grapevines and other woody perennial plants native to temperate continental climates is frequently triggered by short photoperiods. The early induction of these processes by photoperiod promotes winter survival of grapevines in cold temperate zones. Examining the molecular processes, in particular the proteomic changes in the shoot, will provide greater insight into the signaling cascade that initiates growth cessation and dormancy induction. To begin understanding transduction of the photoperiod signal, Vitis riparia Michx. grapevines that had grown for 35 days in long photoperiod (long day, LD, 15 h) were subjected to either a continued LD or a short photoperiod (short day, SD, 13 h) treatment. Shoot tips (4-node shoot terminals) were collected from each treatment at 7 and 28 days of LD and SD for proteomic analysis via two-dimensional (2D) gel electrophoresis.ResultsProtein profiles were characterized in V. riparia shoot tips during active growth or SD induced growth cessation to examine physiological alterations in response to differential photoperiod treatments. A total of 1054 protein spots were present on the 2D gels. Among the 1054 proteins, 216 showed differential abundance between LD and SD (≥ two-fold ratio, p-value ≤ 0.05). After 7 days, 39 protein spots were more abundant in LD and 30 were more abundant in SD. After 28 days, 93 protein spots were more abundant in LD and 54 were more abundant in SD. MS/MS spectrometry was performed to determine the functions of the differentially abundant proteins.ConclusionsThe proteomics analysis uncovered a portion of the signal transduction involved in V. riparia grapevine growth cessation and dormancy induction. Different enzymes of the Calvin-Benson cycle and glutamate synthetase isoforms were more abundant either in LD or SD treatments. In LD tissues the significantly differentially more abundant proteins included flavonoid biosynthesis and polyphenol enzymes, cinnamyl alcohol dehydrogenase, and TCP-1 complexes. In the SD tissue photorespiratory proteins were more abundant than in the LD. The significantly differentially more abundant proteins in SD were involved in ascorbate biosynthesis, photosystem II and photosystem I subunits, light harvesting complexes, and carboxylation enzymes.


Horticulture research | 2016

A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: a case study for marker-assisted selection in grapevine

Shanshan Yang; Jonathan Fresnedo-Ramírez; Minghui Wang; L. M. E. G. Côté; Peter A. Schweitzer; Paola Barba; Elizabeth M. Takacs; Matthew D. Clark; James J. Luby; David C. Manns; Gavin L. Sacks; Anna Katharine Mansfield; Jason P. Londo; Anne Fennell; David M. Gadoury; Bruce I. Reisch; Lance Cadle-Davidson; Qi Sun

Marker-assisted selection (MAS) is often employed in crop breeding programs to accelerate and enhance cultivar development, via selection during the juvenile phase and parental selection prior to crossing. Next-generation sequencing and its derivative technologies have been used for genome-wide molecular marker discovery. To bridge the gap between marker development and MAS implementation, this study developed a novel practical strategy with a semi-automated pipeline that incorporates trait-associated single nucleotide polymorphism marker discovery, low-cost genotyping through amplicon sequencing (AmpSeq) and decision making. The results document the development of a MAS package derived from genotyping-by-sequencing using three traits (flower sex, disease resistance and acylated anthocyanins) in grapevine breeding. The vast majority of sequence reads (⩾99%) were from the targeted regions. Across 380 individuals and up to 31 amplicons sequenced in each lane of MiSeq data, most amplicons (83 to 87%) had <10% missing data, and read depth had a median of 220–244×. Several strengths of the AmpSeq platform that make this approach of broad interest in diverse crop species include accuracy, flexibility, speed, high-throughput, low-cost and easily automated analysis.


Journal of Plant Physiology | 2012

Auxin and cytokinin related gene expression during active shoot growth and latent bud paradormancy in Vitis riparia grapevine

Dong He; Kathy Mathiason; Anne Fennell

Cultural practices for canopy management in grapevines rely on intensive manipulation of shoot architecture to maintain canopy light levels. In contrast to common model plant systems used to study regulation of branch outgrowth, the grapevine has a more complex architecture. The node contains first, second and third order axillary meristems. The prompt bud (N+1) develops into a summer lateral and a latent compound bud develops in the basal node of the summer lateral (N+2, N+3(1,2)). The outgrowth potential of latent buds was determined using common canopy management treatments (shoot tip decapitation and removal of summer laterals and leaves) and monitoring the rate of latent bud outgrowth. Two shoot node regions (apical and basal) with differential outgrowth potential were characterized and it was noted that the shoot tip, summer laterals and leaves in addition to node position contributed to the inhibition of latent bud outgrowth. To advance the understanding of the molecular regulation of bud outgrowth and paradormancy in the complex shoot architecture of grapevines, the expression of auxin and cytokinin genes involved in branching (amidase (VrAMI1), PINFORMED-3 (VrPIN3) and isopentenyl transferase (VrIPT)) were monitored in shoot tips and differentially aged buds of Vitis riparia grapevine shoots. In addition, Histone 3 (VrH3) and a hexose transporter (VrHT1) expression were monitored as a measure of tissue activity. The expression of VrAMI1 and VrPIN3 remained constant in actively growing shoot tips and decreased significantly with increasing bud maturation in paradormant buds. VrHT1 expression was greater in buds than in any other plant tissue tested. VrHT1 may have the potential to be used as an indicator of paradormancy status in grapevines. These characterizations in the complex architecture of the grapevine provide an excellent model system for molecular analysis of bud outgrowth and shoot architecture development.


Frontiers in Plant Science | 2015

Short day transcriptomic programming during induction of dormancy in grapevine

Anne Fennell; Karen Schlauch; Satyanarayana Gouthu; Laurent G. Deluc; Vedbar Singh Khadka; Lekha Sreekantan; Jérôme Grimplet; Grant R. Cramer; Katherine Mathiason

Bud dormancy in grapevine is an adaptive strategy for the survival of drought, high and low temperatures and freeze dehydration stress that limit the range of cultivar adaptation. Therefore, development of a comprehensive understanding of the biological mechanisms involved in bud dormancy is needed to promote advances in selection and breeding, and to develop improved cultural practices for existing grape cultivars. The seasonally indeterminate grapevine, which continuously develops compound axillary buds during the growing season, provides an excellent system for dissecting dormancy, because the grapevine does not transition through terminal bud development prior to dormancy. This study used gene expression patterns and targeted metabolite analysis of two grapevine genotypes that are short photoperiod responsive (Vitis riparia) and non-responsive (V. hybrid, Seyval) for dormancy development to determine differences between bud maturation and dormancy commitment. Grapevine gene expression and metabolites were monitored at seven time points under long (LD, 15 h) and short (SD, 13 h) day treatments. The use of age-matched buds and a small (2 h) photoperiod difference minimized developmental differences and allowed us to separate general photoperiod from dormancy specific gene responses. Gene expression profiles indicated three distinct phases (perception, induction and dormancy) in SD-induced dormancy development in V. riparia. Different genes from the NAC DOMAIN CONTAINING PROTEIN 19 and WRKY families of transcription factors were differentially expressed in each phase of dormancy. Metabolite and transcriptome analyses indicated ABA, trehalose, raffinose and resveratrol compounds have a potential role in dormancy commitment. Finally, a comparison between V. riparia compound axillary bud dormancy and dormancy responses in other species emphasized the relationship between dormancy and the expression of RESVERATROL SYNTHASE and genes associated with C3HC4-TYPE RING FINGER and NAC DOMAIN CONTAINING PROTEIN 19 transcription factors.


Bioinformatics | 2016

QUBIC: a bioconductor package for qualitative biclustering analysis of gene co-expression data

Yu Zhang; Juan Xie; Jinyu Yang; Anne Fennell; Chi Zhang; Qin Ma

Motivation: Biclustering is widely used to identify co‐expressed genes under subsets of all the conditions in a large‐scale transcriptomic dataset. The program, QUBIC, is recognized as one of the most efficient and effective biclustering methods for biological data interpretation. However, its availability is limited to a C implementation and to a low‐throughput web interface. Results: An R implementation of QUBIC is presented here with two unique features: (i) a 82% average improved efficiency by refactoring and optimizing the source C code of QUBIC; and (ii) a set of comprehensive functions to facilitate biclustering‐based biological studies, including the qualitative representation (discretization) of expression data, query‐based biclustering, bicluster expanding, biclusters comparison, heatmap visualization of any identified biclusters and co‐expression networks elucidation. Availability and Implementation: The package is implemented in R (as of version 3.3) and is available from Bioconductor at the URL: http://bioconductor.org/packages/QUBIC, where installation and usage instructions can be found. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Horticulture research | 2016

Towards an open grapevine information system

Anne-Françoise Adam-Blondon; Michael Alaux; Cyril Pommier; Dario Cantu; Z. M. Cheng; Grant R. Cramer; C. Davies; Serge Delrot; Laurent G. Deluc; G. Di Gaspero; Jérôme Grimplet; Anne Fennell; Jason P. Londo; Paul J. Kersey; Fulvio Mattivi; Sushma Naithani; Pascal Neveu; M. Nikolski; Mario Pezzotti; Bruce I. Reisch; R. Topfer; Melané A. Vivier; Doreen Ware; Hadi Quesneville

Viticulture, like other fields of agriculture, is currently facing important challenges that will be addressed only through sustained, dedicated and coordinated research. Although the methods used in biology have evolved tremendously in recent years and now involve the routine production of large data sets of varied nature, in many domains of study, including grapevine research, there is a need to improve the findability, accessibility, interoperability and reusability (FAIR-ness) of these data. Considering the heterogeneous nature of the data produced, the transnational nature of the scientific community and the experience gained elsewhere, we have formed an open working group, in the framework of the International Grapevine Genome Program (www.vitaceae.org), to construct a coordinated federation of information systems holding grapevine data distributed around the world, providing an integrated set of interfaces supporting advanced data modeling, rich semantic integration and the next generation of data mining tools. To achieve this goal, it will be critical to develop, implement and adopt appropriate standards for data annotation and formatting. The development of this system, the GrapeIS, linking genotypes to phenotypes, and scientific research to agronomical and oeneological data, should provide new insights into grape biology, and allow the development of new varieties to meet the challenges of biotic and abiotic stress, environmental change, and consumer demand.

Collaboration


Dive into the Anne Fennell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathy Mathiason

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason P. Londo

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Qin Ma

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lance Cadle-Davidson

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rhoda Burrows

South Dakota State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge