Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Goelzer is active.

Publication


Featured researches published by Anne Goelzer.


Science | 2012

Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in Bacillus subtilis

Pierre Nicolas; Ulrike Mäder; Etienne Dervyn; Tatiana Rochat; Aurélie Leduc; Nathalie Pigeonneau; Elena Bidnenko; Elodie Marchadier; Mark Hoebeke; Stéphane Aymerich; Dörte Becher; Paola Bisicchia; Eric Botella; Olivier Delumeau; Geoff Doherty; Emma L. Denham; Mark J. Fogg; Vincent Fromion; Anne Goelzer; Annette Hansen; Elisabeth Härtig; Colin R. Harwood; Georg Homuth; Hanne Østergaard Jarmer; Matthieu Jules; Edda Klipp; Ludovic Le Chat; François Lecointe; Peter J. Lewis; Wolfram Liebermeister

Outside In Acquisition and analysis of large data sets promises to move us toward a greater understanding of the mechanisms by which biological systems are dynamically regulated to respond to external cues. Now, two papers explore the responses of a bacterium to changing nutritional conditions (see the Perspective by Chalancon et al.). Nicolas et al. (p. 1103) measured transcriptional regulation for more than 100 different conditions. Greater amounts of antisense RNA were generated than expected and appeared to be produced by alternative RNA polymerase targeting subunits called sigma factors. One transition, from malate to glucose as the primary nutrient, was studied in more detail by Buescher et al. (p. 1099) who monitored RNA abundance, promoter activity in live cells, protein abundance, and absolute concentrations of intracellular and extracellular metabolites. In this case, the bacteria responded rapidly and largely without transcriptional changes to life on malate, but only slowly adapted to use glucose, a shift that required changes in nearly half the transcription network. These data offer an initial understanding of why certain regulatory strategies may be favored during evolution of dynamic control systems. A horizontal analysis reveals the breadth of genes turned on and off as nutrients change. Bacteria adapt to environmental stimuli by adjusting their transcriptomes in a complex manner, the full potential of which has yet to be established for any individual bacterial species. Here, we report the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutritional conditions that the organism might encounter in nature. We comprehensively mapped transcription units (TUs) and grouped 2935 promoters into regulons controlled by various RNA polymerase sigma factors, accounting for ~66% of the observed variance in transcriptional activity. This global classification of promoters and detailed description of TUs revealed that a large proportion of the detected antisense RNAs arose from potentially spurious transcription initiation by alternative sigma factors and from imperfect control of transcription termination.


Science | 2012

Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism

Joerg Martin Buescher; Wolfram Liebermeister; Matthieu Jules; Markus Uhr; Jan Muntel; Eric Botella; Bernd Hessling; Roelco J. Kleijn; Ludovic Le Chat; François Lecointe; Ulrike Mäder; Pierre Nicolas; Sjouke Piersma; Frank Rügheimer; Dörte Becher; Philippe Bessières; Elena Bidnenko; Emma L. Denham; Etienne Dervyn; Kevin M. Devine; Geoff Doherty; Samuel Drulhe; Liza Felicori; Mark J. Fogg; Anne Goelzer; Annette Hansen; Colin R. Harwood; Michael Hecker; Sebastian Hübner; Claus Hultschig

Outside In Acquisition and analysis of large data sets promises to move us toward a greater understanding of the mechanisms by which biological systems are dynamically regulated to respond to external cues. Now, two papers explore the responses of a bacterium to changing nutritional conditions (see the Perspective by Chalancon et al.). Nicolas et al. (p. 1103) measured transcriptional regulation for more than 100 different conditions. Greater amounts of antisense RNA were generated than expected and appeared to be produced by alternative RNA polymerase targeting subunits called sigma factors. One transition, from malate to glucose as the primary nutrient, was studied in more detail by Buescher et al. (p. 1099) who monitored RNA abundance, promoter activity in live cells, protein abundance, and absolute concentrations of intracellular and extracellular metabolites. In this case, the bacteria responded rapidly and largely without transcriptional changes to life on malate, but only slowly adapted to use glucose, a shift that required changes in nearly half the transcription network. These data offer an initial understanding of why certain regulatory strategies may be favored during evolution of dynamic control systems. A vertical analysis reveals that a simple switch of one food for another evokes changes at many levels. Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and model-based data analyses of dynamic transcript, protein, and metabolite abundances and promoter activities. Adaptation to malate was rapid and primarily controlled posttranscriptionally compared with the slow, mainly transcriptionally controlled adaptation to glucose that entailed nearly half of the known transcription regulation network. Interactions across multiple levels of regulation were involved in adaptive changes that could also be achieved by controlling single genes. Our analysis suggests that global trade-offs and evolutionary constraints provide incentives to favor complex control programs.


BMC Systems Biology | 2008

Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis

Anne Goelzer; Fadia Bekkal Brikci; Isabelle Martin-Verstraete; Philippe Noirot; Philippe Bessières; Stéphane Aymerich; Vincent Fromion

BackgroundFew genome-scale models of organisms focus on the regulatory networks and none of them integrates all known levels of regulation. In particular, the regulations involving metabolite pools are often neglected. However, metabolite pools link the metabolic to the genetic network through genetic regulations, including those involving effectors of transcription factors or riboswitches. Consequently, they play pivotal roles in the global organization of the genetic and metabolic regulatory networks.ResultsWe report the manually curated reconstruction of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis (transcriptional, translational and post-translational regulations and modulation of enzymatic activities). We provide a systematic graphic representation of regulations of each metabolic pathway based on the central role of metabolites in regulation. We show that the complex regulatory network of B. subtilis can be decomposed as sets of locally regulated modules, which are coordinated by global regulators.ConclusionThis work reveals the strong involvement of metabolite pools in the general regulation of the metabolic network. Breaking the metabolic network down into modules based on the control of metabolite pools reveals the functional organization of the genetic and metabolic regulatory networks of B. subtilis.


Molecular & Cellular Proteomics | 2014

Comprehensive Absolute Quantification of the Cytosolic Proteome of Bacillus subtilis by Data Independent, Parallel Fragmentation in Liquid Chromatography/Mass Spectrometry (LC/MSE)

Jan Muntel; Vincent Fromion; Anne Goelzer; Sandra Maaβ; Ulrike Mäder; Knut Büttner; Michael Hecker; Dörte Becher

In the growing field of systems biology, the knowledge of protein concentrations is highly required to truly understand metabolic and adaptational networks within the cells. Therefore we established a workflow relying on long chromatographic separation and mass spectrometric analysis by data independent, parallel fragmentation of all precursor ions at the same time (LC/MSE). By prevention of discrimination of co-eluting low and high abundant peptides a high average sequence coverage of 40% could be achieved, resulting in identification of almost half of the predicted cytosolic proteome of the Gram-positive model organism Bacillus subtilis (>1,050 proteins). Absolute quantification was achieved by correlation of average MS signal intensities of the three most intense peptides of a protein to the signal intensity of a spiked standard protein digest. Comparative analysis with heavily labeled peptides (AQUA approach) showed the use of only one standard digest is sufficient for global quantification. The quantification results covered almost four orders of magnitude, ranging roughly from 10 to 150,000 copies per cell. To prove this method for its biological relevance selected physiological aspects of B. subtilis cells grown under conditions requiring either amino acid synthesis or alternatively amino acid degradation were analyzed. This allowed both in particular the validation of the adjustment of protein levels by known regulatory events and in general a perspective of new insights into bacterial physiology. Within new findings the analysis of “protein costs” of cellular processes is extremely important. Such a comprehensive and detailed characterization of cellular protein concentrations based on data independent, parallel fragmentation in liquid chromatography/mass spectrometry (LC/MSE) data has been performed for the first time and should pave the way for future comprehensive quantitative characterization of microorganisms as physiological entities.


Metabolic Engineering | 2012

A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae.

Magalie Celton; Anne Goelzer; Carole Camarasa; Vincent Fromion; Sylvie Dequin

Controlling the amounts of redox cofactors to manipulate metabolic fluxes is emerging as a useful approach to optimizing byproduct yields in yeast biotechnological processes. Redox cofactors are extensively interconnected metabolites, so predicting metabolite patterns is challenging and requires in-depth knowledge of how the metabolic network responds to a redox perturbation. Our aim was to analyze comprehensively the metabolic consequences of increased cytosolic NADPH oxidation during yeast fermentation. Using a genetic device based on the overexpression of a modified 2,3-butanediol dehydrogenase catalyzing the NADPH-dependent reduction of acetoin into 2,3-butanediol, we increased the NADPH demand to between 8 and 40-fold the anabolic demand. We developed (i) a dedicated constraint-based model of yeast fermentation and (ii) a constraint-based modeling method based on the dynamical analysis of mass distribution to quantify the in vivo contribution of pathways producing NADPH to the maintenance of redox homeostasis. We report that yeast responds to NADPH oxidation through a gradual increase in the flux through the PP and acetate pathways, providing 80% and 20% of the NADPH demand, respectively. However, for the highest NADPH demand, the model reveals a saturation of the PP pathway and predicts an exchange between NADH and NADPH in the cytosol that may be mediated by the glycerol-DHA futile cycle. We also reveal the contribution of mitochondrial shuttles, resulting in a net production of NADH in the cytosol, to fine-tune the NADH/NAD(+) balance. This systems level study helps elucidate the physiological adaptation of yeast to NADPH perturbation. Our findings emphasize the robustness of yeast to alterations in NADPH metabolism and highlight the role of the glycerol-DHA cycle as a redox valve, providing additional NADPH from NADH under conditions of very high demand.


BMC Genomics | 2012

A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation

Magalie Celton; Isabelle Sanchez; Anne Goelzer; Vincent Fromion; Carole Camarasa; Sylvie Dequin

BackgroundRedox homeostasis is essential to sustain metabolism and growth. We recently reported that yeast cells meet a gradual increase in imposed NADPH demand by progressively increasing flux through the pentose phosphate (PP) and acetate pathways and by exchanging NADH for NADPH in the cytosol, via a transhydrogenase-like cycle. Here, we studied the mechanisms underlying this metabolic response, through a combination of gene expression profiling and analyses of extracellular and intracellular metabolites and 13 C-flux analysis.ResultsNADPH oxidation was increased by reducing acetoin to 2,3-butanediol in a strain overexpressing an engineered NADPH-dependent butanediol dehydrogenase cultured in the presence of acetoin. An increase in NADPH demand to 22 times the anabolic requirement for NADPH was accompanied by the intracellular accumulation of PP pathway metabolites consistent with an increase in flux through this pathway. Increases in NADPH demand were accompanied by the successive induction of several genes of the PP pathway. NADPH-consuming pathways, such as amino-acid biosynthesis, were upregulated as an indirect effect of the decrease in NADPH availability. Metabolomic analysis showed that the most extreme modification of NADPH demand resulted in an energetic problem. Our results also highlight the influence of redox status on aroma production.ConclusionsCombined 13 C-flux, intracellular metabolite levels and microarrays analyses revealed that NADPH homeostasis, in response to a progressive increase in NADPH demand, was achieved by the regulation, at several levels, of the PP pathway. This pathway is principally under metabolic control, but regulation of the transcription of PP pathway genes can exert a stronger effect, by redirecting larger amounts of carbon to this pathway to satisfy the demand for NADPH. No coordinated response of genes involved in NADPH metabolism was observed, suggesting that yeast has no system for sensing NADPH/NADP+ ratio. Instead, the induction of NADPH-consuming amino-acid pathways in conditions of NADPH limitation may indirectly trigger the transcription of a set of PP pathway genes.


Metabolic Engineering | 2015

Quantitative prediction of genome-wide resource allocation in bacteria.

Anne Goelzer; Jan Muntel; Victor Chubukov; Matthieu Jules; Eric Prestel; Rolf Nölker; Mahendra Mariadassou; Stéphane Aymerich; Michael Hecker; Philippe Noirot; Dörte Becher; Vincent Fromion

Predicting resource allocation between cell processes is the primary step towards decoding the evolutionary constraints governing bacterial growth under various conditions. Quantitative prediction at genome-scale remains a computational challenge as current methods are limited by the tractability of the problem or by simplifying hypotheses. Here, we show that the constraint-based modeling method Resource Balance Analysis (RBA), calibrated using genome-wide absolute protein quantification data, accurately predicts resource allocation in the model bacterium Bacillus subtilis for a wide range of growth conditions. The regulation of most cellular processes is consistent with the objective of growth rate maximization except for a few suboptimal processes which likely integrate more complex objectives such as coping with stressful conditions and survival. As a proof of principle by using simulations, we illustrated how calibrated RBA could aid rational design of strains for maximizing protein production, offering new opportunities to investigate design principles in prokaryotes and to exploit them for biotechnological applications.


conference on decision and control | 2009

Cell design in bacteria as a convex optimization problem

Anne Goelzer; Vincent Fromion; Gérard Scorletti

In this paper, we investigate the cell design of bacteria during the exponential growth. To this purpose, we propose to formulate the problem as a non differentiable convex optimization problem equivalent to a Linear Programming feasibility problem. Its resolution predicts for a specific medium not only the distribution of metabolic fluxes and the maximal growth rate, but also the concentrations of the ribosomes and the proteins involved in the metabolic network and thus the composition of the cell for different growth rates. Moreover, our model recovers the known modular structure of the regulation of metabolic pathways for the gram-positive model bacterium Bacillus subtilis.


Frontiers in Microbiology | 2017

Conversion of Glycerol to 3-Hydroxypropanoic Acid by Genetically Engineered Bacillus subtilis

Aida Kalantari; Tao Chen; Boyang Ji; Ivan Andreas Stancik; Vaishnavi Ravikumar; Damjan Franjević; Claire Saulou-Bérion; Anne Goelzer; Ivan Mijakovic

3-Hydroxypropanoic acid (3-HP) is an important biomass-derivable platform chemical that can be converted into a number of industrially relevant compounds. There have been several attempts to produce 3-HP from renewable sources in cell factories, focusing mainly on Escherichia coli, Klebsiella pneumoniae, and Saccharomyces cerevisiae. Despite the significant progress made in this field, commercially exploitable large-scale production of 3-HP in microbial strains has still not been achieved. In this study, we investigated the potential of Bacillus subtilis as a microbial platform for bioconversion of glycerol into 3-HP. Our recombinant B. subtilis strains overexpress the two-step heterologous pathway containing glycerol dehydratase and aldehyde dehydrogenase from K. pneumoniae. Genetic engineering, driven by in silico optimization, and optimization of cultivation conditions resulted in a 3-HP titer of 10 g/L, in a standard batch cultivation. Our findings provide the first report of successful introduction of the biosynthetic pathway for conversion of glycerol into 3-HP in B. subtilis. With this relatively high titer in batch, and the robustness of B. subtilis in high density fermentation conditions, we expect that our production strains may constitute a solid basis for commercial production of 3-HP.


Frontiers in Microbiology | 2016

Reconstruction of the regulatory network for Bacillus subtilis and reconciliation with gene expression data

José P. Faria; Ross Overbeek; Ronald C. Taylor; Neal Conrad; Veronika Vonstein; Anne Goelzer; Vincent Fromion; Miguel Rocha; Isabel Rocha; Christopher S. Henry

We introduce a manually constructed and curated regulatory network model that describes the current state of knowledge of transcriptional regulation of Bacillus subtilis. The model corresponds to an updated and enlarged version of the regulatory model of central metabolism originally proposed in 2008. We extended the original network to the whole genome by integration of information from DBTBS, a compendium of regulatory data that includes promoters, transcription factors (TFs), binding sites, motifs, and regulated operons. Additionally, we consolidated our network with all the information on regulation included in the SporeWeb and Subtiwiki community-curated resources on B. subtilis. Finally, we reconciled our network with data from RegPrecise, which recently released their own less comprehensive reconstruction of the regulatory network for B. subtilis. Our model describes 275 regulators and their target genes, representing 30 different mechanisms of regulation such as TFs, RNA switches, Riboswitches, and small regulatory RNAs. Overall, regulatory information is included in the model for ∼2500 of the ∼4200 genes in B. subtilis 168. In an effort to further expand our knowledge of B. subtilis regulation, we reconciled our model with expression data. For this process, we reconstructed the Atomic Regulons (ARs) for B. subtilis, which are the sets of genes that share the same “ON” and “OFF” gene expression profiles across multiple samples of experimental data. We show how ARs for B. subtilis are able to capture many sets of genes corresponding to regulated operons in our manually curated network. Additionally, we demonstrate how ARs can be used to help expand or validate the knowledge of the regulatory networks by looking at highly correlated genes in the ARs for which regulatory information is lacking. During this process, we were also able to infer novel stimuli for hypothetical genes by exploring the genome expression metadata relating to experimental conditions, gaining insights into novel biology.

Collaboration


Dive into the Anne Goelzer's collaboration.

Top Co-Authors

Avatar

Vincent Fromion

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Dörte Becher

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José P. Faria

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ronald C. Taylor

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ross Overbeek

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Hecker

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Ulrike Mäder

University of Greifswald

View shared research outputs
Researchain Logo
Decentralizing Knowledge