Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Greenbaum is active.

Publication


Featured researches published by Anne Greenbaum.


Computing | 1979

Approximating the inverse of a matrix for use in iterative algorithms on vector processors

Paul F. Dubois; Anne Greenbaum; Garry H. Rodrigue

Most iterative techniques for solving the symmetric positive-definite systemAx=b involve approximating the matrixA by another symmetric positive-definite matrixM and then solving a system of the formMz=d at each iteration. On a vector machine such as the CDC-STAR-100, the solution of this new system can be very time consuming. If, however, an approximationM−1 can be given toA−1, the solutionz=M−1d can be computed rapidly by matrix multiplication, a fast operation on the STAR. Approximations using the Neumann expansion of the inverse ofA give reasonable forms forM−1 and are presented. Computational results using the conjugate gradient method for the “5-point” matrixA are given.ZusammenfassungDie meisten iterativen Methoden zur Lösung des symmetrischen positiv-definitiven SystemsAx=b enthalten die Näherung der MatrixA durch eine andere symmetrische positiv-definitive MatrixM und anschließend daran die Lösung eines Systems der ArtMz=d bei jeder Wiederholung. Auf einer Vektor-Maschine wie der CDC-STAR-100 kann die Lösung dieses neuen Systems sehr zeitraubend sein. Wenn jedoch eine NäherungM−1 zuA−1 gegeben werden kann, so kann die Lösungz=M−1d sehr schnell durch Matrixmultiplikation errechnet werden. Diese Kalkulation kann auf dem STAR schnell ausgeführt werden. Näherungen, bei denen die Neumann-Entwicklung der Inversen vonA verwendet wird, ergeben angemessene Ausdrücke fürM−1. Diese Ausdrücke sind angeführt. Die mit Hilfe der Konjugierten-Gradienten-Methode errechneten Resultate für die „5-Punk”-MatrixA sind angegeben.


SIAM Journal on Matrix Analysis and Applications | 1996

Any Nonincreasing Convergence Curve is Possible for GMRES

Anne Greenbaum; Vlastimil Pták; Zdenuek Strakous

Given a nonincreasing positive sequence


Linear Algebra and its Applications | 1989

Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences

Anne Greenbaum

f(0) \geq f(1) \geq \cdots \geq f(n-1) > 0


Numerische Mathematik | 1979

Comparison of splittings used with the conjugate gradient algorithm

Anne Greenbaum

, it is shown that there exists an


SIAM Journal on Matrix Analysis and Applications | 1997

Estimating the Attainable Accuracy of Recursively Computed Residual Methods

Anne Greenbaum

n


Siam Journal on Scientific and Statistical Computing | 1992

Fast parallel iterative solution of Poisson's and the biharmonic equations on irregular regions

Anita Mayo; Anne Greenbaum

by


SIAM Journal on Matrix Analysis and Applications | 1996

Relations Between Galerkin and Norm-Minimizing Iterative Methodsfor Solving Linear Systems

Jane K. Cullum; Anne Greenbaum

n


SIAM Journal on Scientific Computing | 1998

Using Nonorthogonal Lanczos Vectors in the Computation of Matrix Functions

Vladimir Druskin; Anne Greenbaum; Leonid Knizhnerman

matrix


international symposium on physical design | 1992

On the numerical solution of the biharmonic equation in the plane

Anne Greenbaum; Leslie Greengard; Anita Mayo

A


Bit Numerical Mathematics | 1995

NUMERICAL STABILITY OF GMRES

J. Drkošová; Anne Greenbaum; Miroslav Rozložník; Zdeněk Strakoš

and a vector

Collaboration


Dive into the Anne Greenbaum's collaboration.

Top Co-Authors

Avatar

Britton Chang

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Daeshik Choi

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Eric Machorro

National Nuclear Security Administration

View shared research outputs
Top Co-Authors

Avatar

Congming Li

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Garry H. Rodrigue

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James V. Burke

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie Greengard

Courant Institute of Mathematical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge