Anne Grove
Louisiana State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Grove.
Journal of Molecular Cell Biology | 2010
Inoka C. Perera; Anne Grove
Bacteria and archaea encode members of the large multiple antibiotic resistance regulator (MarR) family of transcriptional regulators. Generally, MarR homologs regulate activity of genes involved in antibiotic resistance, stress responses, virulence or catabolism of aromatic compounds. They constitute a diverse group of transcriptional regulators that includes both repressors and activators, and the conventional mode of regulation entails a genetic locus in which the MarR homolog and a gene under its regulation are encoded divergently; binding of the MarR homolog to the intergenic region typically represses transcription of both genes, while binding of a specific ligand to the transcription factor results in attenuated DNA binding and hence activated gene expression. For many homologs, the natural ligand is unknown. Crystal structures reveal a common architecture with a characteristic winged helix domain for DNA binding, and recent structural information of homologs solved both in the absence and presence of their respective ligands, as well as biochemical data, is finally converging to illuminate the mechanisms by which ligand-binding causes attenuated DNA binding. As MarR homologs regulate pathways that are critical to bacterial physiology, including virulence, a molecular understanding of mechanisms by which ligands affect a regulation of gene activity is essential. Specifying the position of ligand-binding pockets further has the potential to aid in identifying the ligands for MarR homologs for which the ligand remains unknown.
Journal of Biological Chemistry | 2004
Steven P. Wilkinson; Anne Grove
The MarR family of transcriptional regulators comprises a subset of winged helix DNA-binding proteins and includes numerous members that function in environmental surveillance of aromatic compounds. We describe the characterization of HucR, a novel MarR homolog from Deinococcus radiodurans that demonstrates phenolic sensing capabilities. HucR binds as a homodimer to a single site within its promoter/operator region with Kd = 0.29 ± 0.02 nm. The HucR binding site contains a pseudopalindromic sequence, composed of 8-bp half-sites separated by 2 bp. The location of the HucR binding site in the intergenic region between hucR and a putative uricase suggests a mechanism of simultaneous co-repression of these two genes. The substrate of uricase, uric acid, is an efficient antagonist of DNA binding, reducing HucR-DNA complex formation to 50% at 0.26 mm ligand, compared with 5.2 and 46 mm for the aromatic compounds salicylate and acetylsalicylate, respectively. Enhanced levels in vivo of hucR and uricase transcript and increased uricase activity under conditions of excess uric acid further indicate a novel regulatory mechanism of aromatic catabolism in D. radiodurans. Since uric acid is a scavenger of reactive oxygen species, we hypothesize that HucR is a participant in the intrinsic resistance of D. radiodurans to high levels of oxidative stress.
Current Genomics | 2009
LiJuan Xiao; Anne Grove
Cells grow in response to nutrients or growth factors, whose presence is detected and communicated by elaborate signaling pathways. Protein kinases play crucial roles in processes such as cell cycle progression and gene expression, and misregulation of such pathways has been correlated with various diseased states. Signals intended to promote cell growth converge on ribosome biogenesis, as the ability to produce cellular proteins is intimately tied to cell growth. Part of the response to growth signals is therefore the coordinate expression of genes encoding ribosomal RNA (rRNA) and ribosomal proteins (RP). A key player in regulating cell growth is the Target of Rapamycin (TOR) kinase, one of the gatekeepers that prevent cell cycle progression from G1 to S under conditions of nutritional stress. TOR is structurally and functionally conserved in all eukaryotes. Under favorable growth conditions, TOR is active and cells maintain a robust rate of ribosome biogenesis, translation initiation and nutrient import. Under stress conditions, TOR signaling is suppressed, leading to cell cycle arrest, while the failure of TOR to respond appropriately to environmental or nutritional signals leads to uncontrolled cell growth. Emerging evidence from Saccharomyces cerevisiae indicates that High Mobility Group (HMGB) proteins, non-sequence-specific chromosomal proteins, participate in mediating responses to growth signals. As HMGB proteins are distinguished by their ability to alter DNA topology, they frequently function in the assembly of higher-order nucleoprotein complexes. We review here recent evidence, which suggests that HMGB proteins may function to coordinate TOR-dependent regulation of rRNA and RP gene expression.
Current Biology | 2013
Anne Grove
What are MarR proteins? Members of the Multiple Antibiotic Resistance Regulator (MarR) family of transcriptional regulators are named for Escherichia coli MarR. In E. coli, MarR regulates an operon that encodes a drug efflux pump, and mutations in proteins that participate in this system lead to a multiple antibiotic resistance phenotype, hence the name. MarR proteins are members of the winged helix-turn-helix family of transcription factors.
Journal of Biological Chemistry | 2004
Edwin Kamau; Kevin T. Bauerle; Anne Grove
High mobility group box (HMGB) proteins are architectural proteins whose HMG DNA binding domains confer significant preference for distorted DNA, such as 4-way junctions. HMO1 is one of 10 Saccharomyces cerevisiae HMGB proteins, and it is required for normal growth and plasmid maintenance and for regulating the susceptibility of yeast chromatin to nuclease. Using electrophoretic mobility shift assays, we have shown here that HMO1 binds 26-bp duplex DNA with Kd = 39.6 ± 5.0 nm and that its divergent box A domain participates in DNA interactions, albeit with low affinity. HMO1 has only modest preference for DNA with altered conformations, including DNA with nicks, gaps, overhangs, or loops, as well as for 4-way junction structures and supercoiled DNA. HMO1 binds 4-way junctions with half-maximal saturation of 19.6 ± 2.2 nm, with only a modest increase in affinity in the absence of magnesium ions (half-maximal saturation 6.1 ± 1.1 nm). Whereas the box A domain contributes modest structure-specific binding, the box B domain is required for high affinity binding. HMO1 bends DNA, as measured by DNA cyclization assays, facilitating cyclization of 136-, 105-, and 87-bp DNA, but not 75-bp DNA, and it has a significantly longer residence time on DNA minicircles compared with linear duplex DNA. The unique DNA binding properties of HMO1 are consistent with global roles in the maintenance of chromatin structure.
Nucleic Acids Research | 2010
Glen Meades; Brian K. Benson; Anne Grove; Grover L. Waldrop
Acetyl-CoA Carboxylase catalyzes the first committed step in fatty acid synthesis. Escherichia coli acetyl-CoA carboxylase is composed of biotin carboxylase, carboxyltransferase and biotin carboxyl carrier protein functions. The accA and accD genes that code for the α- and β-subunits, respectively, are not in an operon, yet yield an α2β2 carboxyltransferase. Here, we report that carboxyltransferase regulates its own translation by binding the mRNA encoding its subunits. This interaction is mediated by a zinc finger on the β-subunit; mutation of the four cysteines to alanine diminished nucleic acid binding and catalytic activity. Carboxyltransferase binds the coding regions of both subunit mRNAs and inhibits translation, an inhibition that is relieved by the substrate acetyl-CoA. mRNA binding reciprocally inhibits catalytic activity. Preferential binding of carboxyltransferase to RNA in situ was shown using fluorescence resonance energy transfer. We propose an unusual regulatory mechanism by which carboxyltransferase acts as a ‘dimmer switch’ to regulate protein production and catalytic activity, while sensing the metabolic state of the cell through acetyl-CoA concentration.
Journal of Molecular Biology | 2009
Inoka C. Perera; Yong-Hwan Lee; Steven P. Wilkinson; Anne Grove
Members of the multiple antibiotic resistance regulator (MarR) family control gene expression in a variety of metabolic processes in bacteria and archaea. Hypothetical uricase regulator (HucR), which belongs to the ligand-responsive branch of the MarR family, regulates uricase expression in Deinococcus radiodurans by binding a shared promoter region between uricase and HucR genes. We show here that HucR responds only to urate and, to a lesser extent, to xanthine by attenuated DNA binding, compared to other intermediates of purine degradation. Using molecular-dynamics-guided mutational analysis, we identified the ligand-binding site in HucR. Electrophoretic mobility shift assays and intrinsic Trp fluorescence have identified W20 from the N-terminal helix and R80 from helix 3, which serves as a scaffold for the DNA recognition helix, as being essential for ligand binding. Using structural data combined with in silico and in vitro analyses, we propose a mechanism for the attenuation of DNA binding in which a conformational change initiated by charge repulsion due to a bound ligand propagates to DNA recognition helices. This mechanism may apply generally to MarR homologs that bind anionic phenolic ligands.
Biochemical Journal | 2004
Christina Chen; Sharmistha Ghosh; Anne Grove
The histone-like HU protein is ubiquitous in the eubacteria. A role for Escherichia coli HU in compaction of the bacterial genome has been reported, along with regulatory roles in DNA replication, transposition, repair and transcription. We show here that HU from the human pathogen Helicobacter pylori, which has been implicated in the development of ulcers and gastric cancer, exhibits enhanced thermal stability and distinct DNA substrate specificity. Thermal denaturation of HpyHU (H. pylori HU) measured by CD spectroscopy yields a melting temperature (T(m)) of 56.4+/-0.1 degrees C. HpyHU binds linear duplex DNA with a site size of approximately 19 bp and with low affinity, but in striking contrast to E. coli HU, HpyHU has only modest preference for DNA with mismatches, nicks or gaps. Instead, HpyHU binds stably to four-way DNA junctions with half-maximal saturation of 5 nM. Substitution of two residues adjacent to the DNA-intercalating prolines attenuates both the preference for flexible DNA and the ability to bend and supercoil DNA. These observations suggest that proline intercalation generates hinges that must be stabilized by adjacent residues; insufficient stabilization leads to reduced bending and a failure to bind preferably to DNA with flexure points, such as gaps and mismatches.
Methods in Enzymology | 1992
Anne Grove; Takeo Iwamoto; Myrta S. Montal; John M. Tomich; Mauricio Montal
Publisher Summary This chapter discusses a strategy to identify, in the primary structure of channel proteins, segments that determine the functional characteristics of the protein. Amphipathic α-helical segments are identified in the primary structure using secondary structure prediction algorithms. Segments are selected based on sequence similarity between members of a superfamily of channel proteins. Synthesis of the four-helix bundle protein is accomplished by a two-step procedure: the template molecule is synthesized using orthogonal lysine side-chain protection followed by the simultaneous assembly of peptide blocks. Oligomeric clusters of amphipathic α-helices, whether self-assembled in the lipid bilayer or covalently attached to a template molecule in a four-helix bundle configuration, form ionic channels in bilayers. The evidence that fundamental pore properties may be reproduced within a bundle of α-helices representing selected sequences from the primary structure of a channel protein lends credence to the notion that a cluster of amphipathic α-helices constitutes a general pore-forming motif for channel proteins.
Biochemistry | 2008
Anirban Mukherjee; Gargi Bhattacharyya; Anne Grove
Histone-like proteins (such as HU, H-NS, and Fis) participate in nucleoid organization and in DNA replication, recombination, and transcription. Cold shock and anoxia upregulates a homologue of HU (Hlp) in Mycobacterium smegmatis, the nonpathogenic model of Mycobacterium tuberculosis. We show using electrophoretic mobility shift assays that Hlp, which in addition to the HU fold has a basic C-terminal tail containing multiple PAKK and PAAK repeats, has very high affinity for DNA. The affinity of Hlp for 76 bp linear DNA is higher, K d = 0.037 +/- 0.001 nM, compared to an Hlp variant without the C-terminal repeats, K d = 2.5 +/- 0.1 nM and the isolated C-terminal repeat domain, K d = 0.8 +/- 0.2 nM, where K d in all cases reflects an aggregate affinity for the DNA probes, not the affinity for binding to a single site. Hlp lacking the entire C-terminal domain binds DNA only poorly. These data indicate that both Hlp domains contribute to high-affinity DNA binding. Hlp promotes DNA end-joining in the presence of T4 DNA ligase, and this property is mediated by the C-terminal repeats. At <100 nM concentration, Hlp represses transcription by T7 RNA polymerase in vitro whereas the individual N- and C-terminal domains do not, even when present together. Notably, while DNA end-joining can be achieved by the isolated C-terminal domain, transcriptional repression requires for both domains to be present on a single polypeptide. Given the low cellular concentration of Hlp, our data suggest that its primary functional role may be in DNA-dependent responses to environmental stress rather than in nucleoid organization.