Anne Guiochon-Mantel
Université Paris-Saclay
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Guiochon-Mantel.
Biochemical and Biophysical Research Communications | 1987
Micheline Misrahi; Michel Atger; Luc d'Auriol; Hugues Loosfelt; Cécile Mériel; F. Fridlansky; Anne Guiochon-Mantel; Francis Galibert; Edwin Milgrom
A lambda gt10 library containing DNAs complementary to messenger RNAs from human breast cancer T47-D cells was constructed and screened with a cDNA probe encoding the rabbit progesterone receptor. Four overlapping clones have been sequenced. The open reading frame corresponds to a protein of 933 amino acids with a molecular weight of 98,868 Da. The cysteine rich basic region supposed to be involved in DNA binding is completely homologous in the human and rabbit receptors, whereas the C-terminal end, where hormone binding is thought to take place, differs by a single amino acid change. The human progesterone receptor is characterized, as is the rabbit receptor, by the very high proline content of its N-terminal region. When mRNAs from either human breast cancer cell lines T47-D and MCF-7 or from normal human uterus tissue were blotted and probed with the cloned cDNA, four main bands were observed (5100, 4300, 3700, and 2900 nucleotides).
Biochemical and Biophysical Research Communications | 1990
Micheline Misrahi; Hugues Loosfelt; Michel Atger; Sokhavuth Sar; Anne Guiochon-Mantel; Edwin Milgrom
Complementary cDNA clones encoding the TSH (thyroid stimulatory hormone) receptor were isolated from a human thyroid lambda gt10 library using Iow stringency hybridization with LH/hCG (luteinizing hormone-human choriogonadotropic hormone) receptor probes. Sequencing of the clones showed a 764 amino acid open reading frame. The first 21 amino acids probably correspond to a signal peptide, the mature protein thus contains 743 amino acids (calculated molecular weight: 84,501 daltons). Its putative structure consists of a 394 amino acid extracellular domain, a 266 amino acid membrane spanning domain with 7 putative transmembrane segments and a 83 amino acid intracellular domain. A high degree of homology is observed with LH/hCG receptor suggesting the definition of a new subfamily of G-protein coupled receptors. Computer search showed the presence in the putative third intracellular loop of a motif resembling that described in the non receptor type protein tyrosine kinases (c-src, c-yes, c-fgr, etc...). RNA blots showed that the receptor messenger RNA consists of two major species of 4300 and 3900 nucleotides. The cDNA was inserted into an expression vector and after transfection into COS 7 cells it was shown to produce a functional TSH receptor.
The EMBO Journal | 1991
Anne Guiochon-Mantel; Pierre Lescop; Christin-Maitre S; Hugues Loosfelt; Martine Perrot-Applanat; Edwin Milgrom
The nuclear localization of the progesterone receptor is mediated by two signal sequences: one is constitutive and lies in the hinge region (between the DNA and steroid binding domains), the other is hormone dependent and is localized in the second zinc finger of the DNA binding domain. The use of various inhibitors of energy synthesis in cells expressing permanently or transiently the wild‐type receptor or a receptor mutated within the nuclear localization signals, demonstrated that the nuclear residency of the receptor reflects a dynamic situation: the receptor diffusing into the cytoplasm and being constantly and actively transported back into the nucleus. The existence of this nucleo‐cytoplasmic shuttle mechanism was confirmed by receptor transfer from one nucleus to the other in heterokaryons. Preliminary evidence was obtained, using oestrogen receptor, that this phenomenon may be of general significance for steroid receptors.
The New England Journal of Medicine | 2009
Jérôme Bouligand; Cristina Ghervan; Javier A. Tello; Sylvie Brailly-Tabard; Sylvie Salenave; Philippe Chanson; Marc Lombès; Robert P. Millar; Anne Guiochon-Mantel; Jacques Young
We investigated whether mutations in the gene encoding gonadotropin-releasing hormone 1 (GNRH1) might be responsible for idiopathic hypogonadotropic hypogonadism (IHH) in humans. We identified a homozygous GNRH1 frameshift mutation, an insertion of an adenine at nucleotide position 18 (c.18-19insA), in the sequence encoding the N-terminal region of the signal peptide-containing protein precursor of gonadotropin-releasing hormone (prepro-GnRH) in a teenage brother and sister, who had normosmic IHH. Their unaffected parents and a sibling who was tested were heterozygous. This mutation results in an aberrant peptide lacking the conserved GnRH decapeptide sequence, as shown by the absence of immunoreactive GnRH when expressed in vitro. This isolated autosomal recessive GnRH deficiency, reversed by pulsatile GnRH administration, shows the pivotal role of GnRH in human reproduction.
The Journal of Clinical Endocrinology and Metabolism | 2010
Jacques Young; Jérôme Bouligand; Bruno Francou; Marie Laure Raffin-Sanson; Stephanie Gaillez; Marc Jeanpierre; Michaël Grynberg; Peter Kamenicky; Philippe Chanson; Sylvie Brailly-Tabard; Anne Guiochon-Mantel
CONTEXT Missense loss-of-function mutations in TAC3 and TACR3, the genes encoding neurokinin B and its receptor NK3R, respectively, were recently discovered in kindreds with nonsyndromic normosmic congenital hypogonadotropic hypogonadism (CHH), thus identifying a fundamental role of this pathway in the human gonadotrope axis. OBJECTIVE The objective of the study was to investigate the consequences on gonadotrope axis of TAC3 deletion and TACR3 truncation in adult patients with normosmic complete CHH. RESULTS We identified three unrelated patients with the same homozygous substitution in the TAC3 intron 3 acceptor splicing site (c.209-1G>C) and three siblings who bore a homozygous mutation in the TACR3 intron 2 acceptor splicing site (c.738-1G>A). We demonstrated that these two mutations, respectively, deleted neurokinin B and truncated its receptor NK3R. We found in three patients with TAC3 mutation originating from Congo and Haiti a founding event in a more distant ancestor by means of haplotype analysis. We calculated that time to this common ancestor was approximately 21 generations. In several patients we observed a dissociation between the very low LH and normal or nearly normal FSH levels, this gonadotropin responding excessively to the GnRH challenge test. This particular hormonal profile, suggests the possibility of a specific neuroendocrine impairment in patients with alteration of neurokinin B signaling. Finally, in these patients, pulsatile GnRH administration normalized circulating sex steroids, LH release, and restored fertility in one subject. CONCLUSION Our data demonstrate the hypothalamic origin of the gonadotropin deficiency in these genetic forms of normosmic CHH. Neurokinin B and NK3R therefore both play a crucial role in hypothalamic GnRH release in humans.
The New England Journal of Medicine | 2011
Olivia Boyer; Fabien Nevo; Emmanuelle Plaisier; Benoît Funalot; Olivier Gribouval; Geneviève Benoit; Evelyne Huynh Cong; Christelle Arrondel; Marie-Josèphe Tête; Rodrick Montjean; Laurence Richard; Alexandre Karras; Claire Pouteil-Noble; Leila Balafrej; Alain Bonnardeaux; Guillaume Canaud; Christophe Charasse; Jacques Dantal; Georges Deschênes; Patrice Deteix; Odile Dubourg; Philippe Petiot; Dominique Pouthier; Eric LeGuern; Anne Guiochon-Mantel; Isabelle Broutin; Marie-Claire Gubler; Sophie Saunier; Pierre Ronco; Jean-Michel Vallat
BACKGROUND Charcot-Marie-Tooth neuropathy has been reported to be associated with renal diseases, mostly focal segmental glomerulosclerosis (FSGS). However, the common mechanisms underlying the neuropathy and FSGS remain unknown. Mutations in INF2 were recently identified in patients with autosomal dominant FSGS. INF2 encodes a formin protein that interacts with the Rho-GTPase CDC42 and myelin and lymphocyte protein (MAL) that are implicated in essential steps of myelination and myelin maintenance. We therefore hypothesized that INF2 may be responsible for cases of Charcot-Marie-Tooth neuropathy associated with FSGS. METHODS We performed direct genotyping of INF2 in 16 index patients with Charcot-Marie-Tooth neuropathy and FSGS who did not have a mutation in PMP22 or MPZ, encoding peripheral myelin protein 22 and myelin protein zero, respectively. Histologic and functional studies were also conducted. RESULTS We identified nine new heterozygous mutations in 12 of the 16 index patients (75%), all located in exons 2 and 3, encoding the diaphanous-inhibitory domain of INF2. Patients presented with an intermediate form of Charcot-Marie-Tooth neuropathy as well as a glomerulopathy with FSGS on kidney biopsy. Immunohistochemical analysis revealed strong INF2 expression in Schwann-cell cytoplasm and podocytes. Moreover, we demonstrated that INF2 colocalizes and interacts with MAL in Schwann cells. The INF2 mutants perturbed the INF2-MAL-CDC42 pathway, resulting in cytoskeleton disorganization, enhanced INF2 binding to CDC42 and mislocalization of INF2, MAL, and CDC42. CONCLUSIONS INF2 mutations appear to cause many cases of FSGS-associated Charcot-Marie-Tooth neuropathy, showing that INF2 is involved in a disease affecting both the kidney glomerulus and the peripheral nervous system. These findings provide new insights into the pathophysiological mechanisms linking formin proteins to podocyte and Schwann-cell function. (Funded by the Agence Nationale de la Recherche and others.).
Journal of Biological Chemistry | 2003
Anne Chauchereau; Larbi Amazit; Monique Quesne; Anne Guiochon-Mantel; Edwin Milgrom
SUMO-1 (small ubiquitin-like modifier) conjugation regulates the subcellular localization, stability, and activity of a variety of proteins. We show here that SUMO-1 overexpression markedly enhances progesterone receptor (PR)-mediated gene transcription. PR undergoes a sumoylation at lysine 388 located in its N-terminal domain. However, sumoylation of the receptor is not responsible for enhanced transcription because substitution of its target lysine did not abolish the effect of SUMO-1 and even converted the receptor into a slightly more active transactivator. Furthermore estrogen receptor α (ERα)-driven transcription is also enhanced by SUMO-1 overexpression contrasting with the absence of sumoylation of this receptor. We thus analyzed SUMO-1 conjugation to the steroid receptor coactivator SRC-1. We showed that this protein contains two major sites of conjugation at Lys-732 and Lys-774. Sumoylation was shown to increase PR-SRC-1 interaction and to prolong SRC-1 retention in the nucleus. It did not prevent SRC-1 ubiquitinylation and did not exert a clear effect on the stability of the protein. Overexpression of SUMO-1 enhanced PR-mediated gene transcription even in the presence of non-sumoylated mutants of SRC-1. This observation suggests that among the many protein partners involved in steroid hormone-mediated gene regulation several are probably targets of SUMO-1 modification.
British Journal of Haematology | 2002
Sophie Roux; Véronique Meignin; Jeanine Quillard; Geri Meduri; Anne Guiochon-Mantel; Jean-Paul Fermand; Edwin Milgrom; Xavier Mariette
Summary. The new members of the tumour necrosis factor (TNF) receptor‐ligand family, receptor activator of nuclear factor‐κB ligand (RANKL) and its receptor RANK, play a crucial role in osteoclast differentiation and activation. An increased expression of RANKL and/or RANK may be involved in the excessive bone resorption observed in multiple myeloma (MM). We used immunohistochemistry to study RANK and RANKL expression in bone marrow (BM) biopsies obtained at diagnosis in 15 MM patients, six patients with monoclonal gammopathy of undetermined significance (MGUS) and 10 normal BM biopsies. Plasma cells were not labelled with anti‐RANKL or anti‐RANK antibodies. In all biopsies, RANKL was expressed in endosteal bone surface, around vessels and in cells characterized by cytoplasmic expansions. These last cells did not express CD45 and were vimentin positive, corresponding to bone marrow stromal cells. Numerous stromal cells expressed RANKL in MM and MGUS specimens, with a greater expression in MM than in MGUS. Very few cells were stained with anti‐RANKL in normal BM specimens. With the anti‐RANK antibody, small mononuclear cells in the bone microenvironment were positive and were identified as erythroblast cells. In conclusion, we showed that RANKL was expressed in reticular stromal cells, with a greater intensity in myeloma specimens. These results suggest that RANKL overexpressed by bone marrow stromal cells may contribute to the high rate of bone resorption observed in MM.
American Journal of Clinical Pathology | 2002
Sophie Roux; Larbi Amazit; Geri Meduri; Anne Guiochon-Mantel; Edwin Milgrom; Xavier Mariette
In giant cell tumors of bone (GCTBs), the mesenchymal stromal cells are the neoplastic cells and induce recruitment and formation of osteoclasts (OCs). Studies on recently discovered members of the tumor necrosis factor receptor-ligand family have demonstrated a crucial role of RANKL (receptor activator of nuclear factor kappa B [RANK] ligand) expressed by osteoblast/stromal cells and of its receptor RANK expressed by OCs during OC differentiation and activation. OCs typically are present in large numbers in GCTBs, suggesting that these tumors may contain cells expressing factors that stimulate OC precursor recruitment and differentiation. We used immunohistochemical analysis to study RANKL and RANK expression in 5 GCTBs. Multinucleated cells and some mononuclear cells showed strong positive staining with anti-RANK antibodies; RANKL was present in a subset of mononuclear cells that did not express the hematopoietic lineage cell marker CD45, a feature that identified them as mesenchymal tumor cells. Our results suggest that RANKL expression may have a role in the pathogenesis of GCTBs and in the formation of the large OC population present in these tumors.
Neuroendocrinology | 2013
Jacques Young; Jyothis T. George; Javier A. Tello; Bruno Francou; Jérôme Bouligand; Anne Guiochon-Mantel; Sylvie Brailly-Tabard; Richard A. Anderson; Robert P. Millar
Pulsatile gonadotropin-releasing hormone (GnRH) is crucial to normal reproductive function and abnormalities in pulse frequency give rise to reproductive dysfunction. Kisspeptin and neurokinin B (NKB), neuropeptides secreted by the same neuronal population in the ventral hypothalamus, have emerged recently as critical central regulators of GnRH and thus gonadotropin secretion. Patients with mutations resulting in loss of signaling by either of these neuroendocrine peptides fail to advance through puberty but the mechanisms mediating this remain unresolved. We report here that continuous kisspeptin infusion restores gonadotropin pulsatility in patients with loss-of-function mutations in NKB (TAC3) or its receptor (TAC3R), indicating that kisspeptin on its own is sufficient to stimulate pulsatile GnRH secretion. Moreover, our findings suggest that NKB action is proximal to kisspeptin in the reproductive neuroendocrine cascade regulating GnRH secretion, and may act as an autocrine modulator of kisspeptin secretion. The ability of continuous kisspeptin infusion to induce pulsatile gonadotropin secretion further indicates that GnRH neurons are able to set up pulsatile secretion in the absence of pulsatile exogenous kisspeptin.