Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne I. Turner is active.

Publication


Featured researches published by Anne I. Turner.


Stress | 2002

Stress and Reproduction: Central Mechanisms and Sex Differences in Non-rodent Species

Alan J. Tilbrook; Anne I. Turner; Iain J. Clarke

Despite extensive research, the mechanisms by which stress affects reproduction are unknown. Activation of stress systems could potentially influence reproduction at any level of the hypothalamo-pituitary gonadal axis. Nonetheless, the predominant impact is on the secretion of gonadotrophin releasing hormone (GnRH) from the brain and the secretion of the gonadotrophins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), from the gonadotrophs of the anterior pituitary gland. When stress is prolonged, it is likely that secretion of the gonadotrophins will be suppressed but the effects of acute stress or repeated acute stress are not clear. Different stressors activate different pathways for varying durations, and the actions of stress vary with sex and are influenced by the predominance of particular sex steroids in the circulation. The mechanisms by which stress influences reproduction are likely to involve complex interactions between a number of central and peripheral pathways and may be different in males and females. To understand these mechanisms, it is important to determine the stress pathways that are activated by particular stressors and to establish how these pathways affect the secretion and actions of GnRH. Furthermore, there is a need to know how stress influences the feedback actions of gonadal steroids and inhibin.


Sports Medicine | 2011

Obstacles in the Optimization of Bone Health Outcomes in the Female Athlete Triad

Gaele Ducher; Anne I. Turner; Sonja Kukuljan; Kathleen J. Pantano; Jennifer L. Carlson; Nancy I. Williams; Mary Jane De Souza

Maintaining low body weight for the sake of performance and aesthetic purposes is a common feature among young girls and women who exercise on a regular basis, including elite, college and high-school athletes, members of fitness centres, and recreational exercisers. High energy expenditure without adequate compensation in energy intake leads to an energy deficiency, which may ultimately affect reproductive function and bone health. The combination of low energy availability, menstrual disturbances and low bone mineral density is referred to as the ‘female athlete triad’. Not all athletes seek medical assistance in response to the absence of menstruation for 3 or more months as some believe that long-term amenorrhoea is not harmful. Indeed, many women may not seek medical attention until they sustain a stress fracture.This review investigates current issues, controversies and strategies in the clinical management of bone health concerns related to the female athlete triad. Current recommendations focus on either increasing energy intake or decreasing energy expenditure, as this approach remains the most efficient strategy to prevent further bone health complications. However, convincing the athlete to increase energy availability can be extremely challenging.Oral contraceptive therapy seems to be a common strategy chosen by many physicians to address bone health issues in young women with amenorrhoea, although there is little evidence that this strategy improves bone mineral density in this population. Assessment of bone health itself is difficult due to the limitations of dual-energy X-ray absorptiometry (DXA) to estimate bone strength. Understanding how bone strength is affected by low energy availability, weight gain and resumption of menses requires further investigations using 3-dimensional bone imaging techniques in order to improve the clinical management of the female athlete triad.


Hormones and Behavior | 2008

Psychosocial stress suppresses attractivity, proceptivity and pulsatile LH secretion in the ewe

Bree Pierce; P.H. Hemsworth; Elizabeth T.A. Rivalland; Elizabeth R. Wagenmaker; A.D. Morrissey; Melissa Papargiris; Iain J. Clarke; Fred J. Karsch; Anne I. Turner; Alan J. Tilbrook

Various stressors suppress pulsatile secretion of luteinizing hormone (LH) in ewes and cortisol has been shown to be a mediator of this effect under various conditions. In contrast, little is known about the impact of stress and cortisol on sexual behavior in the ewe. Therefore, we tested the hypothesis that both psychosocial stress and stress-like levels of cortisol will reduce the level of attractivity, proceptivity and receptivity in addition to suppressing LH secretion in the ewe. In Experiment 1, a layered stress paradigm of psychosocial stress was used, consisting of isolation for 4 h with the addition of restraint, blindfold and noise of a barking dog (predator stress) at hourly intervals. This stress paradigm reduced LH pulse amplitude in ovariectomized ewes. In Experiment 2, ovariectomized ewes were artificially induced into estrus with progesterone and estradiol benzoate treatment and the layered stress paradigm was applied. LH was measured and sexual behavior was assessed using T-mazes and mating tests. Stress reduced pulsatile LH secretion, and also reduced attractivity and proceptivity of ewes but had no effect on receptivity. In Experiment 3, ewes artificially induced into estrus were infused with cortisol for 30 h. Cortisol elevated circulating plasma concentrations of cortisol, delayed the onset of estrus and resulted in increased circling behavior of ewes (i.e. moderate avoidance) during estrus and increased investigation and courtship from rams. There was no effect of cortisol on attractivity, proceptivity or receptivity during estrus. We conclude that psychosocial stress inhibits LH secretion, the ability of ewes to attract rams (attractivity) and the motivation of ewes to seek rams and initiate mating (proceptivity), but cortisol is unlikely to be the principal mediator of these effects.


Neuroendocrinology | 2008

Responses of the Hypothalamopituitary Adrenal Axis and the Sympathoadrenal System to Isolation/Restraint Stress in Sheep of Different Adiposity

Alan J. Tilbrook; Elizabeth A.T. Rivalland; Anne I. Turner; Gavin W. Lambert; Iain J. Clarke

There is evidence that levels of adipose tissue can influence responses of the hypothalamopituitary-adrenal (HPA) axis to stress in humans and rats but this has not been explored in sheep. Also, little is known about the sympathoadrenal responses to stress in individuals with relatively different levels of adipose tissue. We tested the hypothesis that the stress-induced activation of the HPA axis and sympathoadrenal system is lower in ovariectomized ewes with low levels of body fat (lean) than ovariectomized ewes with high levels of body fat (fat). Ewes underwent dietary manipulation for 3 months to yield a group of lean ewes (n = 7) with a mean (±SEM) live weight of 39.1 ± 0.9 kg and body fat of 8.9 ± 0.6% and fat ewes (n = 7) with a mean (±SEM) live weight of 69.0 ± 1.8 kg and body fat of 31.7 ± 3.4%. Fat ewes also had higher circulating concentrations of leptin than lean ewes. Blood samples were collected every 15 min over 8 h when no stress was imposed (control day) and on a separate day when 4 h of isolation/restraint was imposed after 4 h of pretreatment sampling (stress day). Plasma concentrations of adrenocorticotropic hormone (ACTH), cortisol, epinephrine and norepinephrine did not change significantly over the control day and did not differ between lean and fat ewes. Stress did not affect plasma leptin levels. All stress hormones increased significantly during isolation/restraint stress. The ACTH, cortisol and epinephrine responses were greater in fat ewes than lean ewes but norepinephrine responses were similar. Our results suggest that relative levels of adipose tissue influence the stress-induced activity of the hypothalamopituitary-adrenal axis and some aspects of the sympathoadrenal system with fat animals having higher responses than lean animals.


Biology of Reproduction | 2003

Seasonal Differences in the Effect of Isolation and Restraint Stress on the Luteinizing Hormone Response to Gonadotropin-Releasing Hormone in Hypothalamopituitary Disconnected, Gonadectomized Rams and Ewes

C. A. Stackpole; Anne I. Turner; Iain J. Clarke; Gavin W. Lambert; Alan J. Tilbrook

Abstract Stress responses are thought to act within the hypothalamopituitary unit to impair the reproductive system, and the sites of action may differ between sexes. The effect of isolation and restraint stress on pituitary responsiveness to GnRH in sheep was investigated, with emphasis on possible sex differences. Experiments were conducted during the breeding season and the nonbreeding season. In both experiments, 125 ng of GnRH was injected i.v. every 2 h into hypothalamopituitary disconnected, gonadectomized rams and ewes on 3 experimental days, with each day divided into two periods. During the second period on Day 2, isolation and restraint stress was imposed for 5.5 h. Plasma concentrations of LH and cortisol were measured in samples of blood collected from the jugular vein. In the second experiment (nonbreeding season), plasma concentrations of epinephrine, norepinephrine, 3,4-dihydroxyphenylalanine, and 3,4-dihydroxyphenylglycol were also measured. In both experiments, there was no effect of isolation and restraint stress on plasma concentrations of cortisol in either sex. During the breeding season, there was no effect of isolation and restraint stress on plasma concentrations of LH in either sex. During the nonbreeding season, the amplitude of the first LH pulse after the commencement of stress was significantly reduced (P < 0.05) in rams and ewes. In the second experiment, during stress there was a significant increase (P < 0.05) in plasma concentrations of epinephrine in rams and ewes and significantly higher (P < 0.05) basal concentrations of norepinephrine in ewes than in rams. These results suggest that in sheep stress reduces responsiveness of the pituitary gland to exogenous GnRH during the nonbreeding season but not during the breeding season, possibly because of mediators of the stress response other than those of the hypothalamus-pituitary-adrenal gland axis.


Biology of Reproduction | 2009

Cortisol Interferes with the Estradiol-Induced Surge of Luteinizing Hormone in the Ewe

Elizabeth R. Wagenmaker; Kellie M. Breen; Amy E. Oakley; Bree Pierce; Alan J. Tilbrook; Anne I. Turner; Fred J. Karsch

Abstract Two experiments were conducted to test the hypothesis that cortisol interferes with the positive feedback action of estradiol that induces the luteinizing hormone (LH) surge. Ovariectomized sheep were treated sequentially with progesterone and estradiol to create artificial estrous cycles. Cortisol or vehicle (saline) was infused from 2 h before the estradiol stimulus through the time of the anticipated LH surge in the artificial follicular phase of two successive cycles. The plasma cortisol increment produced by infusion was ∼1.5 times greater than maximal concentrations seen during infusion of endotoxin, which is a model of immune/inflammatory stress. In experiment 1, half of the ewes received vehicle in the first cycle and cortisol in the second; the others were treated in reverse order. All ewes responded with an LH surge. Cortisol delayed the LH surge and reduced its amplitude, but both effects were observed only in the second cycle. Experiment 2 was modified to provide better control for a cycle effect. Four treatment sequences were tested (cycle 1-cycle 2): vehicle-vehicle, cortisol-cortisol, vehicle-cortisol, cortisol-vehicle. Again, cortisol delayed but did not block the LH surge, and this delay occurred in both cycles. Thus, an elevation in plasma cortisol can interfere with the positive feedback action of estradiol by delaying and attenuating the LH surge.


Reproduction, Fertility and Development | 2002

Susceptibility of reproduction in female pigs to impairment by stress and the role of the hypothalamo-pituitary-adrenal axis

Anne I. Turner; P.H. Hemsworth; Alan J. Tilbrook

Although it is generally considered that stress can impair reproduction, we suggest that the impact of acute or repeated acute stress or acute or repeated acute elevations of cortisol are of little consequence in female pigs, even if these occur during the series of endocrine events that induce oestrus and ovulation. It is important to understand the impact of acute stress on reproduction because, in the intensive production of livestock, animals are often subjected to short-term challenges. There seems little doubt that reproduction in a proportion of female pigs is susceptible to impairment by severe and prolonged stress or the sustained elevation of cortisol but only when this continues for a substantial period. In female pigs, where reproduction is susceptible to impairment by severe prolonged stress, it is possible that the mediators of this suppression are cortisol, corticotrophin-releasing factor and vasopressin but, in pigs, there is evidence to suggest that adrenocorticotrophic hormone is not involved. Other substances secreted during stress may be involved but these are not considered in this review. It is possible that the mediators of stress act at any level of the hypothalamo-pituitary-ovarian axis. Although a variety of experimental manipulations have provided potential mediators and mechanisms for the stress-induced suppression of reproduction, these experimental manipulations rarely represented physiological circumstances so it is not clear if such mechanisms would be important in a physiological context. The precise mediators and mechanisms by which hormones released during stress may inhibit reproductive processes during severe prolonged stress are yet to be determined.


Animal Reproduction Science | 1998

The effect of repeated boar exposure on cortisol secretion and reproduction in gilts

Anne I. Turner; P.H. Hemsworth; P.E. Hughes; Benedict J. Canny; Alan J. Tilbrook

It has been proposed that short-term activation of the hypothalamo-pituitary adrenal axis, with a consequent increase in the secretion of cortisol, amy disrupt the endocrine events prior to ovulation and thereby impair reproduction in females. We investigated this concept in gilts in which oestrus was detected by introduction to boars, where intense physical contact is possible, or by applying pressure to the back of gilts (back-pressure test) during fence-line exposure to boars, where intense physical contact is prohibited. We expected that there would be a greater release of cortisol and that reproduction would be inhibited in gilts introduced to boars compared to gilts in which the back-pressure test was used. As expected, introduction of gilts to boars resulted in a significant transient increase in plasma concentrations of cortisol while there was no significant effect of using the back-pressure test on plasma cortisol. Nevertheless, introduction of gilts to boars did not impair reproduction and there was no effect of method of detecting oestrus on duration of oestrus, sexual receptivity, fertility or fecundity. The length of the oestrous cycle was decreased and ovulation rate increased in gilts that were introduced to boars compared to gilts that underwent the back-pressure test, indicating that introduction of gilts to boars may have stimulated these aspects of reproduction. These stimulatory effects may have been due to an increased exposure of gilts to sexual behaviour and stimuli from boars when introduced to boars and/or to stimulatory effects of the hypothalamo-pituitary adrenal axis on some aspects of reproduction.


Neuroscience | 2007

Isolation and restraint stress results in differential activation of corticotrophin-releasing hormone and arginine vasopressin neurons in sheep

Elizabeth T.A. Rivalland; Iain J. Clarke; Anne I. Turner; S. Pompolo; Alan J. Tilbrook

This study investigated sex differences in the stress-induced activation of neurons containing corticotrophin-releasing hormone (CRH), arginine vasopressin (AVP) and enkephalin in the paraventricular nucleus (PVN) of gonadectomized male and female sheep. Groups (n=3) of both sexes were either subjected to 90 min isolation and restraint stress (stress group) or were not stressed. Blood samples were taken every 10 min for 90 min prior to and after stress to monitor cortisol levels in plasma. Brains were harvested after 90 min of stress. Stress caused elevation of plasma cortisol levels to a similar extent in both sexes. Double-labeling immunohistochemistry for Fos and either CRH, AVP or enkephalin was undertaken to quantify the numbers of neurons staining for CRH, AVP and enkephalin that also immunostained for Fos. Stress increased Fos immunostaining in all cell types. There was a greater proportion of CRH than AVP neurons activated in stressed animals. There were no sex differences in the activation of CRH and AVP neurons although females had a greater proportion of enkephalin cells staining for Fos than males in both control and stressed animals. There were no differences between control and stressed animals in the proportion of cells co-staining for CRH and AVP. We conclude that isolation and restraint stress activates neurons producing CRH, AVP and enkephalin in sheep and that CRH may play a greater role than AVP in regulating adrenocorticotrophic hormone secretion in response to this stressor in sheep. Finally, isolation and restraint stress does not influence co-localization of CRH and AVP in sheep.


Neuroscience | 2005

Co-localization and distribution of corticotrophin-releasing hormone, arginine vasopressin and enkephalin in the paraventricular nucleus of sheep : A sex comparison

Elizabeth T.A. Rivalland; Javed Iqbal; Iain J. Clarke; Anne I. Turner; Alan J. Tilbrook

The paraventricular nucleus (PVN) is integral to regulation of the hypothalamo-pituitary-adrenal (HPA) axis and contains cells producing corticotrophin-releasing hormone (CRH), arginine vasopressin (AVP) and enkephalin. We used immunohistochemistry to map these peptides and to resolve the extent of co-localization within PVN cells in intact and gonadectomized male and female sheep. Immunoreactive (ir) CRH, AVP and enkephalin cells were mapped in two rams and two ewes at 180 mum intervals throughout the rostro-caudal extent of the PVN. Similar distributions of AVP-ir cells occurred in both sexes whereas CRH-ir and enkephalin-ir cells extended more rostrally in rams. In groups (n=4) of intact and gonadectomized sheep of both sexes, co-localization and distribution of neuropeptides was influenced by sex and gonadectomy. Males had more AVP and CRH cells than females. Intact animals had more AVP cells than gonadectomized animals. There were no differences between groups in the number or percentage of cells that stained for both CRH and AVP or in the number of cells that stained for both CRH and enkephalin. Differences were observed in the percentage of enkephalin cells that contained CRH with males having a greater percentage of co-localized cells than did females. Differences were also observed in the number and percentage of cells that stained for both enkephalin and AVP; the number of cells that stained for both neuropeptides was greater in males than in females and greater in intact animals than in gonadectomized animals. Differences were observed in the percentage of AVP cells that contained enkephalin, and in the percentage of enkephalin cells that contained AVP with males having a greater percentage of co-localized cells than did females. We conclude that sex and gonadal status affect peptide distribution in the PVN of the sheep which may provide an anatomical basis for sex differences in HPA axis responses to stress.

Collaboration


Dive into the Anne I. Turner's collaboration.

Top Co-Authors

Avatar

Alan J. Tilbrook

South Australian Research and Development Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gavin W. Lambert

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. J. Clarke

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge