Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne L. Fletcher is active.

Publication


Featured researches published by Anne L. Fletcher.


Journal of Experimental Medicine | 2004

Gene Dosage–limiting Role of Aire in Thymic Expression, Clonal Deletion, and Organ-specific Autoimmunity

Adrian Liston; Daniel Gray; Sylvie Lesage; Anne L. Fletcher; Judith Wilson; Kylie E. Webster; Hamish S. Scott; Richard L. Boyd; Leena Peltonen; Christopher C. Goodnow

Inactivation of the autoimmune regulator (Aire) gene causes a rare recessive disorder, autoimmune polyendocrine syndrome 1 (APS1), but it is not known if Aire-dependent tolerance mechanisms are susceptible to the quantitative genetic changes thought to underlie more common autoimmune diseases. In mice with a targeted mutation, complete loss of Aire abolished expression of an insulin promoter transgene in thymic epithelium, but had no effect in pancreatic islets or the testes. Loss of one copy of Aire diminished thymic expression of the endogenous insulin gene and the transgene, resulting in a 300% increase in islet-reactive CD4 T cells escaping thymic deletion in T cell receptor transgenic mice, and dramatically increased progression to diabetes. Thymic deletion induced by antigen under control of the thyroglobulin promoter was abolished in Aire homozygotes and less efficient in heterozygotes, providing an explanation for thyroid autoimmunity in APS1. In contrast, Aire deficiency had no effect on thymic deletion to antigen controlled by a systemic H-2K promoter. The sensitivity of Aire-dependent thymic deletion to small reductions in function makes this pathway a prime candidate for more subtle autoimmune quantitative trait loci, and suggests that methods to increase Aire activity would be a potent strategy to lower the incidence of organ-specific autoimmunity.


Nature Immunology | 2012

Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks.

Deepali Malhotra; Anne L. Fletcher; Jillian L. Astarita; Veronika Lukacs-Kornek; Prakriti Tayalia; Santiago F. Gonzalez; Kutlu G. Elpek; Sook Kyung Chang; Konstantin Knoblich; Martin E. Hemler; Michael B. Brenner; Michael C. Carroll; David J. Mooney; Shannon J. Turley

Lymph node stromal cells (LNSCs) closely regulate immunity and self-tolerance, yet key aspects of their biology remain poorly elucidated. Here, comparative transcriptomic analyses of mouse LNSC subsets demonstrated the expression of important immune mediators, growth factors and previously unknown structural components. Pairwise analyses of ligands and cognate receptors across hematopoietic and stromal subsets suggested a complex web of crosstalk. Fibroblastic reticular cells (FRCs) showed enrichment for higher expression of genes relevant to cytokine signaling, relative to their expression in skin and thymic fibroblasts. LNSCs from inflamed lymph nodes upregulated expression of genes encoding chemokines and molecules involved in the acute-phase response and the antigen-processing and antigen-presentation machinery. Poorly studied podoplanin (gp38)-negative CD31− LNSCs showed similarities to FRCs but lacked expression of interleukin 7 (IL-7) and were identified as myofibroblastic pericytes that expressed integrin α7. Together our data comprehensively describe the transcriptional characteristics of LNSC subsets.


Journal of Experimental Medicine | 2010

Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions

Anne L. Fletcher; Veronika Lukacs-Kornek; Erika D. Reynoso; Sophie Pinner; Angelique Bellemare-Pelletier; Mark S Curry; Ai-ris Collier; Richard L. Boyd; Shannon J. Turley

Lymph node stromal cells (LNSCs) can induce potent, antigen-specific T cell tolerance under steady-state conditions. Although expression of various peripheral tissue–restricted antigens (PTAs) and presentation to naive CD8+ T cells has been demonstrated, the stromal subsets responsible have not been identified. We report that fibroblastic reticular cells (FRCs), which reside in the T cell zone of the LN, ectopically express and directly present a model PTA to naive T cells, inducing their proliferation. However, we found that no single LNSC subset was responsible for PTA expression; rather, each subset had its own characteristic antigen display. Studies to date have concentrated on PTA presentation under steady-state conditions; however, because LNs are frequently inflammatory sites, we assessed whether inflammation altered stromal cell–T cell interactions. Strikingly, FRCs showed reduced stimulation of T cells after Toll-like receptor 3 ligation. We also characterize an LNSC subset expressing the highest levels of autoimmune regulator, which responds potently to bystander inflammation by up-regulating PTA expression. Collectively, these data show that diverse stromal cell types have evolved to constitutively express PTAs, and that exposure to viral products alters the interaction between T cells and LNSCs.


Molecular Cell | 2010

Intronic miR-211 Assumes the Tumor Suppressive Function of Its Host Gene in Melanoma

Carmit Levy; Mehdi Khaled; Dimitrios Iliopoulos; Maja M. Janas; Steffen Schubert; Sophie Pinner; Po Hao Chen; Shuqiang Li; Anne L. Fletcher; Satoru Yokoyama; Kenneth L. Scott; Levi A. Garraway; Jun S. Song; Scott R. Granter; Shannon J. Turley; David E. Fisher; Carl D. Novina

When it escapes early detection, malignant melanoma becomes a highly lethal and treatment-refractory cancer. Melastatin is greatly downregulated in metastatic melanomas and is widely believed to function as a melanoma tumor suppressor. Here we report that tumor suppressive activity is not mediated by melastatin but instead by a microRNA (miR-211) hosted within an intron of melastatin. Increasing expression of miR-211 but not melastatin reduced migration and invasion of malignant and highly invasive human melanomas characterized by low levels of melastatin and miR-211. An unbiased network analysis of melanoma-expressed genes filtered for their roles in metastasis identified three central node genes: IGF2R, TGFBR2, and NFAT5. Expression of these genes was reduced by miR-211, and knockdown of each gene phenocopied the effects of increased miR-211 on melanoma invasiveness. These data implicate miR-211 as a suppressor of melanoma invasion whose expression is silenced or selected against via suppression of the entire melastatin locus during human melanoma progression.


Immunity | 2012

Podoplanin-Rich Stromal Networks Induce Dendritic Cell Motility via Activation of the C-type Lectin Receptor CLEC-2

Sophie E. Acton; Jillian L. Astarita; Deepali Malhotra; Veronika Lukacs-Kornek; Bettina Franz; Paul R. Hess; Zoltán Jakus; Michael P. Kuligowski; Anne L. Fletcher; Kutlu G. Elpek; Angelique Bellemare-Pelletier; Lindsay Sceats; Erika D. Reynoso; Santiago F. Gonzalez; Daniel B. Graham; Jonathan L. Chang; Anneli Peters; Matthew Woodruff; Young A. Kim; Wojciech Swat; Takashi Morita; Vijay K. Kuchroo; Michael C. Carroll; Mark L. Kahn; Kai W. Wucherpfennig; Shannon J. Turley

Summary To initiate adaptive immunity, dendritic cells (DCs) move from parenchymal tissues to lymphoid organs by migrating along stromal scaffolds that display the glycoprotein podoplanin (PDPN). PDPN is expressed by lymphatic endothelial and fibroblastic reticular cells and promotes blood-lymph separation during development by activating the C-type lectin receptor, CLEC-2, on platelets. Here, we describe a role for CLEC-2 in the morphodynamic behavior and motility of DCs. CLEC-2 deficiency in DCs impaired their entry into lymphatics and trafficking to and within lymph nodes, thereby reducing T cell priming. CLEC-2 engagement of PDPN was necessary for DCs to spread and migrate along stromal surfaces and sufficient to induce membrane protrusions. CLEC-2 activation triggered cell spreading via downregulation of RhoA activity and myosin light-chain phosphorylation and triggered F-actin-rich protrusions via Vav signaling and Rac1 activation. Thus, activation of CLEC-2 by PDPN rearranges the actin cytoskeleton in DCs to promote efficient motility along stromal surfaces.


Frontiers in Immunology | 2011

Reproducible Isolation of Lymph Node Stromal Cells Reveals Site-Dependent Differences in Fibroblastic Reticular Cells

Anne L. Fletcher; Deepali Malhotra; Sophie E. Acton; Veronika Lukacs-Kornek; Angelique Bellemare-Pelletier; Mark S Curry; Myriam Armant; Shannon J. Turley

Within lymph nodes, non-hematopoietic stromal cells organize and interact with leukocytes in an immunologically important manner. In addition to organizing T and B cell segregation and expressing lymphocyte survival factors, several recent studies have shown that lymph node stromal cells shape the naïve T cell repertoire, expressing self-antigens which delete self-reactive T cells in a unique and non-redundant fashion. A fundamental role in peripheral tolerance, in addition to an otherwise extensive functional portfolio, necessitates closer study of lymph node stromal cell subsets using modern immunological techniques; however this has not routinely been possible in the field, due to difficulties reproducibly isolating these rare subsets. Techniques were therefore developed for successful ex vivo and in vitro manipulation and characterization of lymph node stroma. Here we discuss and validate these techniques in mice and humans, and apply them to address several unanswered questions regarding lymph node composition. We explored the steady-state stromal composition of lymph nodes isolated from mice and humans, and found that marginal reticular cells and lymphatic endothelial cells required lymphocytes for their normal maturation in mice. We also report alterations in the proportion and number of fibroblastic reticular cells (FRCs) between skin-draining and mesenteric lymph nodes. Similarly, transcriptional profiling of FRCs revealed changes in cytokine production from these sites. Together, these methods permit highly reproducible stromal cell isolation, sorting, and culture.


Nature Reviews Immunology | 2010

The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs

Shannon J. Turley; Anne L. Fletcher; Kutlu G. Elpek

T cells encounter their cognate antigens in specialized compartments of secondary lymphoid organs (SLOs). There, dendritic cells (DCs) present self and non-self antigens to T cells, and promote immunity or tolerance depending on the availability of danger signals. Resident stromal cells orchestrate the interaction between T cells and DCs by recruiting them to T cell zones and guiding their migration within SLOs. Recent studies have shown that SLO-resident stromal cells also have a crucial role in tolerance induction in the periphery. In this Review, we discuss the roles of SLO-resident DCs and stromal cells in shaping T cell responses.


American Journal of Pathology | 2011

Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses.

M. A. Alikhan; Christina Victoria Jones; Timothy M Williams; Anthony Gordon Beckhouse; Anne L. Fletcher; Michelle M. Kett; Samy Sakkal; Chrishan S. Samuel; Robert G. Ramsay; James A. Deane; Christine A. Wells; Melissa H. Little; David A. Hume; Sharon D. Ricardo

Colony-stimulating factor (CSF)-1 controls the survival, proliferation, and differentiation of macrophages, which are recognized as scavengers and agents of the innate and the acquired immune systems. Because of their plasticity, macrophages are endowed with many other essential roles during development and tissue homeostasis. We present evidence that CSF-1 plays an important trophic role in postnatal organ growth and kidney repair. Notably, the injection of CSF-1 postnatally enhanced kidney weight and volume and was associated with increased numbers of tissue macrophages. Moreover, CSF-1 promotes postnatal renal repair in mice after ischemia-reperfusion injury by recruiting and influencing macrophages toward a reparative state. CSF-1 treatment rapidly accelerated renal repair with tubular epithelial cell replacement, attenuation of interstitial fibrosis, and functional recovery. Analysis of macrophages from CSF-1-treated kidneys showed increased expression of insulin-like growth factor-1 and anti-inflammatory genes that are known CSF-1 targets. Taken together, these data suggest that CSF-1 is important in kidney growth and the promotion of endogenous repair and resolution of inflammatory injury.


Immunological Reviews | 2013

Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity

Deepali Malhotra; Anne L. Fletcher; Shannon J. Turley

Secondary lymphoid organs (SLOs), including lymph nodes, Peyers patches, and the spleen, have evolved to bring cells of the immune system together. In these collaborative environments, lymphocytes scan the surfaces of antigen‐presenting cells for cognate antigens, while moving along stromal networks. The cell‐cell interactions between stromal and hematopoietic cells in SLOs are therefore integral to the normal functioning of these tissues. Not only do stromal cells physically construct SLO architecture but they are essential for regulating hematopoietic populations within these domains. Stromal cells interact closely with lymphocytes and dendritic cells, providing scaffolds on which these cells migrate, and recruiting them into niches by secreting chemokines. Within lymph nodes, stromal cell‐ensheathed conduit networks transport small antigens deep into the SLO parenchyma. More recently, stromal cells have been found to induce peripheral CD8+ T‐cell tolerance and control the extent to which newly activated T cells proliferate within lymph nodes. Thus, stromal‐hematopoietic crosstalk has important consequences for regulating immune cell function within SLOs. In addition, stromal cell interactions with hematopoietic cells, other stroma, and the inflammatory milieu have profound effects on key stromal functions. Here, we examine ways in which these interactions within the lymph node environment influence the adaptive immune response.


Nature Reviews Immunology | 2015

Lymph node fibroblastic reticular cells in health and disease

Anne L. Fletcher; Sophie E. Acton; Konstantin Knoblich

Over the past decade, a series of discoveries relating to fibroblastic reticular cells (FRCs) — immunologically specialized myofibroblasts found in lymphoid tissue — has promoted these cells from benign bystanders to major players in the immune response. In this Review, we focus on recent advances regarding the immunobiology of lymph node-derived FRCs, presenting an updated view of crucial checkpoints during their development and their dynamic control of lymph node expansion and contraction during infection. We highlight the robust effects of FRCs on systemic B cell and T cell responses, and we present an emerging view of FRCs as drivers of pathology following acute and chronic viral infections. Lastly, we review emerging therapeutic advances that harness the immunoregulatory properties of FRCs.

Collaboration


Dive into the Anne L. Fletcher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Biju Parekkadan

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge