Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Lamsa is active.

Publication


Featured researches published by Anne Lamsa.


Proceedings of the National Academy of Sciences of the United States of America | 2013

MS/MS networking guided analysis of molecule and gene cluster families

Don D. Nguyen; Cheng-Hsuan Wu; Wilna J. Moree; Anne Lamsa; Marnix H. Medema; X. Zhao; Ronnie G. Gavilán; Marystella Aparicio; Librada Atencio; Chanaye Jackson; Javier Ballesteros; Joel Sanchez; Jeramie D. Watrous; Vanessa V. Phelan; Corine van de Wiel; Roland D. Kersten; Samina Mehnaz; René De Mot; Elizabeth A. Shank; Pep Charusanti; Harish Nagarajan; Brendan M. Duggan; Bradley S. Moore; Nuno Bandeira; Bernhard O. Palsson; Kit Pogliano; Marcelino Gutiérrez; Pieter C. Dorrestein

Significance The paper introduces the concepts of molecular families (MFs) and gene cluster families (GCFs). We define MFs as structurally related molecules based on their mass spectral fragmentation patterns, whereas GCFs are biosynthetic gene clusters that show similar gene cluster organization with a high degree of sequence similarity. We use MS/MS networking as a tool to map the molecular network of more than 60 organisms, most of which are unsequenced, and locate their nonribosomal peptide MFs. These MFs from unsequenced organisms are then connected to GCFs of publicly available genome sequences of closely related organisms. The ability to correlate the production of specialized metabolites to the genetic capacity of the organism that produces such molecules has become an invaluable tool in aiding the discovery of biotechnologically applicable molecules. Here, we accomplish this task by matching molecular families with gene cluster families, making these correlations to 60 microbes at one time instead of connecting one molecule to one organism at a time, such as how it is traditionally done. We can correlate these families through the use of nanospray desorption electrospray ionization MS/MS, an ambient pressure MS technique, in conjunction with MS/MS networking and peptidogenomics. We matched the molecular families of peptide natural products produced by 42 bacilli and 18 pseudomonads through the generation of amino acid sequence tags from MS/MS data of specific clusters found in the MS/MS network. These sequence tags were then linked to biosynthetic gene clusters in publicly accessible genomes, providing us with the ability to link particular molecules with the genes that produced them. As an example of its use, this approach was applied to two unsequenced Pseudoalteromonas species, leading to the discovery of the gene cluster for a molecular family, the bromoalterochromides, in the previously sequenced strain P. piscicida JCM 20779T. The approach itself is not limited to 60 related strains, because spectral networking can be readily adopted to look at molecular family–gene cluster families of hundreds or more diverse organisms in one single MS/MS network.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis

Wei-Ting Liu; Yu-Liang Yang; Yuquan Xu; Anne Lamsa; Nina M. Haste; Jane Y. Yang; Julio Ng; David J. Gonzalez; Craig D. Ellermeier; Paul D. Straight; Pavel A. Pevzner; Joe Pogliano; Victor Nizet; Kit Pogliano; Pieter C. Dorrestein

During bacterial cannibalism, a differentiated subpopulation harvests nutrients from their genetically identical siblings to allow continued growth in nutrient-limited conditions. Hypothesis-driven imaging mass spectrometry (IMS) was used to identify metabolites active in a Bacillus subtilis cannibalism system in which sporulating cells lyse nonsporulating siblings. Two candidate molecules with sequences matching the products of skfA and sdpC, genes for the proposed cannibalistic factors sporulation killing factor (SKF) and sporulation delaying protein (SDP), respectively, were identified and the structures of the final products elucidated. SKF is a cyclic 26-amino acid (aa) peptide that is posttranslationally modified with one disulfide and one cysteine thioether bridged to the α-position of a methionine, a posttranslational modification not previously described in biology. SDP is a 42-residue peptide with one disulfide bridge. In spot test assays on solid medium, overproduced SKF and SDP enact a cannibalistic killing effect with SDP having higher potency. However, only purified SDP affected B. subtilis cells in liquid media in fluorescence microscopy and growth assays. Specifically, SDP treatment delayed growth in a concentration-dependent manner, caused increases in cell permeability, and ultimately caused cell lysis accompanied by the production of membrane tubules and spheres. Similarly, SDP but not SKF was able to inhibit the growth of the pathogens Staphylococcus aureus and Staphylococcus epidermidis with comparable IC50 to vancomycin. This investigation, with the identification of SKF and SDP structures, highlights the strength of IMS in investigations of metabolic exchange of microbial colonies and also demonstrates IMS as a promising approach to discover novel biologically active molecules.


The EMBO Journal | 2009

A ribosome–nascent chain sensor of membrane protein biogenesis in Bacillus subtilis

Shinobu Chiba; Anne Lamsa; Kit Pogliano

Proteins in the YidC/Oxa1/Alb3 family have essential functions in membrane protein insertion and folding. Bacillus subtilis encodes two YidC homologs, one that is constitutively expressed (spoIIIJ/yidC1) and a second (yqjG/yidC2) that is induced in spoIIIJ mutants. Regulated induction of yidC2 allows B. subtilis to maintain capacity of the membrane protein insertion pathway. We here show that a gene located upstream of yidC2 (mifM/yqzJ) serves as a sensor of SpoIIIJ activity that regulates yidC2 translation. Decreased SpoIIIJ levels or deletion of the MifM transmembrane domain arrests mifM translation and unfolds an mRNA hairpin that otherwise blocks initiation of yidC2 translation. This regulated translational arrest and yidC2 induction require a specific interaction between the MifM C‐terminus and the ribosomal polypeptide exit tunnel. MifM therefore acts as a ribosome–nascent chain complex rather than as a fully synthesized protein. B. subtilis MifM and the previously described secretion monitor SecM in Escherichia coli thereby provide examples of the parallel evolution of two regulatory nascent chains that monitor different protein export pathways by a shared molecular mechanism.


Molecular Microbiology | 2012

The Bacillus subtilis cannibalism toxin SDP collapses the proton motive force and induces autolysis

Anne Lamsa; Wei-Ting Liu; Pieter C. Dorrestein; Kit Pogliano

Bacillus subtilis SDP is a peptide toxin that kills cells outside the biofilm to support continued growth. We show that purified SDP acts like endogenously produced SDP; it delays sporulation, and the SdpI immunity protein confers SDP resistance. SDP kills a variety of Gram‐positive bacteria in the phylum Firmicutes, as well as Escherichia coli with a compromised outer membrane, suggesting it participates in defence of the B. subtilis biofilm against Gram‐positive bacteria as well as cannibalism. Fluorescence microscopy reveals that the effect of SDP on cells differs from that of nisin, nigericin, valinomycin and vancomycin‐KCl, but resembles that of CCCP, DNP and azide. Indeed, SDP rapidly collapses the PMF as measured by fluorometry and flow cytometry, which triggers the slower process of autolysis. This secondary consequence of SDP treatment is not required for cell death since the autolysin‐defective lytC, lytD, lytE, lytF strain fails to be lysed but is nevertheless killed by SDP. Collapsing the PMF is an ideal mechanism for a toxin involved in cannibalism and biofilm defence, since this would incapacitate neighbouring cells by inhibiting motility and secretion of proteins and toxins. It would also induce autolysis in many Gram‐positive species, thereby releasing nutrients that promote biofilm growth.


The Journal of Antibiotics | 2014

MS/MS-based networking and peptidogenomics guided genome mining revealed the stenothricin gene cluster in Streptomyces roseosporus.

Wei-Ting Liu; Anne Lamsa; Weng Ruh Wong; Paul D. Boudreau; Roland D. Kersten; Yao Peng; Wilna J. Moree; Brendan M. Duggan; Bradley S. Moore; William H. Gerwick; Roger G. Linington; Kit Pogliano; Pieter C. Dorrestein

Most (75%) of the anti-infectives that save countless lives and enormously improve quality of life originate from microbes found in nature. Herein, we described a global visualization of the detectable molecules produced from a single microorganism, which we define as the ‘molecular network’ of that organism, followed by studies to characterize the cellular effects of antibacterial molecules. We demonstrate that Streptomyces roseosporus produces at least four non-ribosomal peptide synthetase-derived molecular families and their gene subnetworks (daptomycin, arylomycin, napsamycin and stenothricin) were identified with different modes of action. A number of previously unreported analogs involving truncation, glycosylation, hydrolysis and biosynthetic intermediates and/or shunt products were also captured and visualized by creation of a map through MS/MS networking. The diversity of antibacterial compounds produced by S. roseosporus highlights the importance of developing new approaches to characterize the molecular capacity of an organism in a more global manner. This allows one to more deeply interrogate the biosynthetic capacities of microorganisms with the goal to streamline the discovery pipeline for biotechnological applications in agriculture and medicine. This is a contribution to a special issue to honor Chris Walsh’s amazing career.


ACS Chemical Biology | 2016

Rapid Inhibition Profiling in Bacillus subtilis to Identify the Mechanism of Action of New Antimicrobials

Anne Lamsa; Javier Lopez-Garrido; Diana Quach; Eammon P. Riley; Joe Pogliano; Kit Pogliano

Increasing antimicrobial resistance has become a major public health crisis. New antimicrobials with novel mechanisms of action (MOA) are desperately needed. We previously developed a method, bacterial cytological profiling (BCP), which utilizes fluorescence microscopy to rapidly identify the MOA of antimicrobial compounds. BCP is based upon our discovery that cells treated with antibiotics affecting different metabolic pathways generate different cytological signatures, providing quantitative information that can be used to determine a compounds MOA. Here, we describe a system, rapid inhibition profiling (RIP), for creating cytological profiles of new antibiotic targets for which there are currently no chemical inhibitors. RIP consists of the fast, inducible degradation of a target protein followed by BCP. We demonstrate that degrading essential proteins in the major metabolic pathways for DNA replication, transcription, fatty acid biosynthesis, and peptidoglycan biogenesis in Bacillus subtilis rapidly produces cytological profiles closely matching that of antimicrobials targeting the same pathways. Additionally, RIP and antibiotics targeting different steps in fatty acid biosynthesis can be differentiated from each other. We utilize RIP and BCP to show that the antibacterial MOA of four nonsteroidal anti-inflammatory antibiotics differs from that proposed based on in vitro data. RIP is a versatile method that will extend our knowledge of phenotypes associated with inactivating essential bacterial enzymes and thereby allow for screening for molecules that inhibit novel essential targets.


The Journal of Antibiotics | 2016

Application of bacterial cytological profiling to crude natural product extracts reveals the antibacterial arsenal of Bacillus subtilis

Poochit Nonejuie; Rachelle M. Trial; Gerald L. Newton; Anne Lamsa; Varahenage R. Perera; Julieta Aguilar; Wei-Ting Liu; Pieter C. Dorrestein; Joe Pogliano; Kit Pogliano

Although most clinically used antibiotics are derived from natural products, identifying new antibacterial molecules from natural product extracts is difficult due to the complexity of these extracts and the limited tools to correlate biological activity with specific molecules. Here, we show that bacterial cytological profiling (BCP) provides a rapid method for mechanism of action determination on plates and in complex natural product extracts and for activity-guided purification. We prepared an extract from Bacillus subtilis 3610 that killed the Escherichia coli lptD mutant and used BCP to observe two types of bioactivities in the unfractionated extract: inhibition of translation and permeablization of the cytoplasmic membrane. We used BCP to guide purification of the molecules responsible for each activity, identifying the translation inhibitors bacillaene and bacillaene B (glycosylated bacillaene) and demonstrating that two molecules contribute to cell permeabilitization, the bacteriocin subtilosin and the cyclic peptide sporulation killing factor. Our results suggest that bacillaene mediates translational arrest, and show that bacillaene B has a minimum inhibitory concentration 10 × higher than unmodified bacillaene. Finally, we show that BCP can be used to screen strains on an agar plate without the need for extract preparation, greatly saving time and improving throughput. Thus, BCP simplifies the isolation of novel natural products, by identifying strains, crude extracts and fractions with interesting bioactivities even when multiple activities are present, allowing investigators to focus labor-intensive steps on those with desired activities.


Environmental Microbiology | 2015

Fatty acid‐releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase

Diana X. Sahonero-Canavesi; Christian Sohlenkamp; Mario Sandoval-Calderón; Anne Lamsa; Kit Pogliano; Isabel M. López-Lara; Otto Geiger

Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth.


ACS Chemical Biology | 2018

Rapid Inhibition Profiling identifies a keystone target in the nucleotide biosynthesis pathway

Christine E. Peters; Anne Lamsa; Roland Liu; Diana Quach; Joseph Sugie; Lauren Brumage; Joe Pogliano; Javier Lopez-Garrido; Kit Pogliano

Collaboration


Dive into the Anne Lamsa's collaboration.

Top Co-Authors

Avatar

Kit Pogliano

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joe Pogliano

University of California

View shared research outputs
Top Co-Authors

Avatar

Wei-Ting Liu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilna J. Moree

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge