Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Lanois is active.

Publication


Featured researches published by Anne Lanois.


PLOS ONE | 2011

The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes

John M. Chaston; Garret Suen; Sarah L. Tucker; Aaron W. Andersen; Archna Bhasin; Edna Bode; Helge B. Bode; Alexander O. Brachmann; Charles E. Cowles; Kimberly N. Cowles; Creg Darby; Limaris de Léon; Kevin Drace; Zijin Du; Alain Givaudan; Erin E. Herbert Tran; Kelsea A. Jewell; Jennifer J. Knack; Karina C. Krasomil-Osterfeld; Ryan Kukor; Anne Lanois; Phil Latreille; Nancy K. Leimgruber; Carolyn M. Lipke; Renyi Liu; Xiaojun Lu; Eric C. Martens; Pradeep Reddy Marri; Claudine Médigue; Megan L. Menard

Members of the genus Xenorhabdus are entomopathogenic bacteria that associate with nematodes. The nematode-bacteria pair infects and kills insects, with both partners contributing to insect pathogenesis and the bacteria providing nutrition to the nematode from available insect-derived nutrients. The nematode provides the bacteria with protection from predators, access to nutrients, and a mechanism of dispersal. Members of the bacterial genus Photorhabdus also associate with nematodes to kill insects, and both genera of bacteria provide similar services to their different nematode hosts through unique physiological and metabolic mechanisms. We posited that these differences would be reflected in their respective genomes. To test this, we sequenced to completion the genomes of Xenorhabdus nematophila ATCC 19061 and Xenorhabdus bovienii SS-2004. As expected, both Xenorhabdus genomes encode many anti-insecticidal compounds, commensurate with their entomopathogenic lifestyle. Despite the similarities in lifestyle between Xenorhabdus and Photorhabdus bacteria, a comparative analysis of the Xenorhabdus, Photorhabdus luminescens, and P. asymbiotica genomes suggests genomic divergence. These findings indicate that evolutionary changes shaped by symbiotic interactions can follow different routes to achieve similar end points.


Molecular Microbiology | 2008

FliZ, a flagellar regulator, is at the crossroads between motility, haemolysin expression and virulence in the insect pathogenic bacterium Xenorhabdus

Anne Lanois; Grégory Jubelin; Alain Givaudan

There is a complex interplay between the regulation of flagellar motility and the expression of virulence factors in many bacterial pathogens. We investigated the role of FliZ in the regulation of flagellar and virulence genes in Xenorhabdus nematophila, an insect pathogen. The fliZ gene is the second gene in the fliAZ operon in X. nematophila. In vivo transcription analysis revealed a positive feedback loop of fliAZ transcription in which FliZ activates flhDC, the master operon of flagellar regulon in X. nematophila, leading to an increased transcription of the FlhDC‐dependent promoter of fliAZ. We also showed that fliAZ and flhDC mutants lacked motility, had no haemolysin or Tween lipase activity and displayed an attenuated virulence phenotype in insects. Lipase activity is controlled by FliA, whereas haemolysin production and full virulence phenotype have been reported to be FliZ‐dependent. Transcriptional analysis revealed that FliZ directly controlled expression of the xhlBA and xaxAB operons, which encode haemolysins from the two‐partner secretion system and the binary XaxAB toxin family respectively. We suggest that this regulatory pathway may also occur in other pathogenic enterobacteria with genes encoding members of these two growing families of haemolysins.


Environmental Microbiology | 2011

Studies of the dynamic expression of the Xenorhabdus FliAZ regulon reveal atypical iron‐dependent regulation of the flagellin and haemolysin genes during insect infection

Grégory Jubelin; Sylvie Pagès; Anne Lanois; Marie-Hélène Boyer; Jean-Baptiste Ferdy; Alain Givaudan

Xenorhabdus nematophila engages in complex interactions with invertebrates, through its symbiosis with soil nematodes and its pathogenicity to a broad range of insect larvae. Among the regulatory proteins of Xenorhabdus involved in host interactions, the sigma factor FliA and the regulator FliZ, expressed from the fliAZ operon, play a key role in mediating the production of exoenzymes, motility and full virulence in insects (Lanois et al., 2008). In this study, we investigated the dynamics of the FliA-dependent flagellin gene fliC and FliZ-dependent haemolysin genes xaxAB during insect infection and nematode association by carrying out real-time expression analysis using an unstable GFP monitoring system. We showed that expression of the FliAZ-dependent genes in infected insects is not restricted to a specific tissue but increases significantly just prior to host death and reaches a maximal level in larvae cadaver. Using an iron availability reporter construct, we also showed that iron starvation conditions inhibit expression of FliAZ-dependent genes in vitro, as well as during the first steps of the infectious process. These findings shed further light on the role of the FliAZ regulon in the Xenorhabdus life cycle and suggest that iron may constitute a signal governing Xenorhabdus adaptation to shifting host environments.


PLOS Genetics | 2013

FliZ Is a Global Regulatory Protein Affecting the Expression of Flagellar and Virulence Genes in Individual Xenorhabdus nematophila Bacterial Cells

Grégory Jubelin; Anne Lanois; Dany Severac; Stéphanie Rialle; Cyrille Longin; Alain Givaudan

Heterogeneity in the expression of various bacterial genes has been shown to result in the presence of individuals with different phenotypes within clonal bacterial populations. The genes specifying motility and flagellar functions are coordinately regulated and form a complex regulon, the flagellar regulon. Complex interplay has recently been demonstrated in the regulation of flagellar and virulence gene expression in many bacterial pathogens. We show here that FliZ, a DNA-binding protein, plays a key role in the insect pathogen, Xenorhabdus nematophila, affecting not only hemolysin production and virulence in insects, but efficient swimming motility. RNA-Seq analysis identified FliZ as a global regulatory protein controlling the expression of 278 Xenorhabdus genes either directly or indirectly. FliZ is required for the efficient expression of all flagellar genes, probably through its positive feedback loop, which controls expression of the flhDC operon, the master regulator of the flagellar circuit. FliZ also up- or downregulates the expression of numerous genes encoding non-flagellar proteins potentially involved in key steps of the Xenorhabdus lifecycle. Single-cell analysis revealed the bimodal expression of six identified markers of the FliZ regulon during exponential growth of the bacterial population. In addition, a combination of fluorescence-activated cell sorting and RT-qPCR quantification showed that this bimodality generated a mixed population of cells either expressing (“ON state”) or not expressing (“OFF state”) FliZ-dependent genes. Moreover, studies of a bacterial population exposed to a graded series of FliZ concentrations showed that FliZ functioned as a rheostat, controlling the rate of transition between the “OFF” and “ON” states in individuals. FliZ thus plays a key role in cell fate decisions, by transiently creating individuals with different potentials for motility and host interactions.


Genome Announcements | 2013

Draft Genome Sequence and Annotation of the Entomopathogenic Bacterium Xenorhabdus nematophila Strain F1.

Anne Lanois; Jean-Claude Ogier; Jérôme Gouzy; Christine Laroui; Zoé Rouy; Alain Givaudan

ABSTRACT We report the 4.3-Mb genome sequence of Xenorhabdus nematophila strain F1, a Gram-negative bacterium that is a symbiont of the entomopathogenic nematode Steinernema carpocapsae and pathogenic by direct injection for a wide variety of insects.


PLOS ONE | 2016

A New Member of the Growing Family of Contact-Dependent Growth Inhibition Systems in Xenorhabdus doucetiae

Jean-Claude Ogier; Bernard Duvic; Anne Lanois; Alain Givaudan

Xenorhabdus is a bacterial symbiont of entomopathogenic Steinernema nematodes and is pathogenic for insects. Its life cycle involves a stage inside the insect cadaver, in which it competes for environmental resources with microorganisms from soil and the insect gut. Xenorhabdus is, thus, a useful model for identifying new interbacterial competition systems. For the first time, in an entomopathogenic bacterium, Xenorhabdus doucetiae strain FRM16, we identified a cdi-like locus. The cdi loci encode contact-dependent inhibition (CDI) systems composed of proteins from the two–partner secretion (TPS) family. CdiB is the outer membrane protein and CdiA is the toxic exoprotein. An immunity protein, CdiI, protects bacteria against inhibition. We describe here the growth inhibition effect of the toxic C-terminus of CdiA from X. doucetiae FRM16, CdiA-CTFRM16, following its production in closely and distantly related enterobacterial species. CdiA-CTFRM16 displayed Mg2+-dependent DNase activity, in vitro. CdiA-CTFRM16-mediated growth inhibition was specifically neutralized by CdiIFRM16. Moreover, the cdi FRM16 locus encodes an ortholog of toxin-activating proteins C that we named CdiCFRM16. In addition to E. coli, the cdiBCAI-type locus was found to be widespread in environmental bacteria interacting with insects, plants, rhizospheres and soils. Phylogenetic tree comparisons for CdiB, CdiA and CdiC suggested that the genes encoding these proteins had co-evolved. By contrast, the considerable variability of CdiI protein sequences suggests that the cdiI gene is an independent evolutionary unit. These findings further characterize the sparsely described cdiBCAI-type locus.


Applied and Environmental Microbiology | 2011

Transcriptional analysis of a Photorhabdus sp. variant reveals transcriptional control of phenotypic variation and multifactorial pathogenicity in insects.

Anne Lanois; Sylvie Pagès; S. Bourot; A.-S. Canoy; Alain Givaudan

ABSTRACT Photorhabdus luminescens lives in a mutualistic association with entomopathogenic nematodes and is pathogenic for insects. Variants of Photorhabdus frequently arise irreversibly and are studied because they have altered phenotypic traits that are potentially important for the host interaction. VAR* is a colonial and phenotypic variant displaying delayed pathogenicity when directly injected into the insect, Spodoptera littoralis. In this study, we evaluated the role of transcriptomic modulation in determining the phenotypic variation and delayed pathogenicity of VAR* with respect to the corresponding wild-type form, TT01α. A P. luminescens microarray identified 148 genes as differentially transcribed between VAR* and TT01α. The net regulator status of VAR* was found to be significantly modified. We also observed in VAR* a decrease in the transcription of genes supporting certain phenotypic traits, such as pigmentation, crystalline inclusion, antibiosis, and protease and lipase activities. Three genes encoding insecticidal toxins (pit and pirB) or putative insecticidal toxins (xnp2) were less transcribed in VAR* than in the TT01α. The overexpression of these genes was not sufficient to restore the virulence of VAR* to the levels of ΤΤ01α, which suggests that the lower virulence of VAR* does not result from impaired toxemia in insects. Three loci involved in oxidative stress responses (sodA, katE, and the hca operon) were found to be downregulated in VAR*. This is consistent with the greater sensitivity of VAR* to H2O2 and may account for the impaired bacteremia in the hemolymph of S. littoralis larvae observed with VAR*. In conclusion, we demonstrate here that some phenotypic traits of VAR* are regulated transcriptionally and highlight the multifactorial nature of pathogenicity in insects.


Current Topics in Microbiology and Immunology | 2016

Flagellar Regulation and Virulence in the Entomopathogenic Bacteria—Xenorhabdus nematophila and Photorhabdus luminescens

Alain Givaudan; Anne Lanois

There is a complex interplay between the regulation of flagellar motility and the expression of virulence factors in many bacterial pathogens. Here, we review the literature on the direct and indirect roles of flagellar motility in mediating the tripartite interaction between entomopathogenic bacteria (Photorhabdus and Xenorhabdus), their nematode hosts, and their insect targets. First, we describe the swimming and swarming motility of insect pathogenic bacteria and its impact on insect colonization. Then, we describe the coupling between the expression of flagellar and virulence genes and the dynamic of expression of the flagellar regulon during invertebrate infection. We show that the flagellar type 3 secretion system (T3SS) is also an export apparatus for virulence proteins in X. nematophila. Finally, we demonstrate that phenotypic variation, a common property of the bacterial symbionts of nematodes, also alters flagellar motility in Photorhabdus and Xenorhabdus. Finally, the so-called phenotypic heterogeneity phenomenon in the flagellar gene expression network will be also discussed. As the main molecular studies were performed in X. nematophila, future perspectives for the study of the interplay between flagellum and invertebrate interactions in Photorhabdus will be discussed.


PLOS ONE | 2014

Ail and PagC-Related Proteins in the Entomopathogenic Bacteria of Photorhabdus Genus

Annabelle Mouammine; Anne Lanois; Sylvie Pagès; Bénédicte Lafay; Virginie Molle; Marc J. Canova; Pierre-Alain Girard; Bernard Duvic; Alain Givaudan

Among pathogenic Enterobacteriaceae, the proteins of the Ail/OmpX/PagC family form a steadily growing family of outer membrane proteins with diverse biological properties, potentially involved in virulence such as human serum resistance, adhesion and entry into eukaryotic culture cells. We studied the proteins Ail/OmpX/PagC in the bacterial Photorhabdus genus. The Photorhabdus bacteria form symbiotic complexes with nematodes of Heterorhabditis species, associations which are pathogenic to insect larvae. Our phylogenetic analysis indicated that in Photorhabdus asymbiotica and Photorhabdus luminescens only Ail and PagC proteins are encoded. The genomic analysis revealed that the Photorhabdus ail and pagC genes were present in a unique copy, except two ail paralogs from P. luminescens. These genes, referred to as ail1 Pl and ail2 Pl, probably resulted from a recent tandem duplication. Surprisingly, only ail1 Pl expression was directly controlled by PhoPQ and low external Mg2+ conditions. In P. luminescens, the magnesium-sensing two-component regulatory system PhoPQ regulates the outer membrane barrier and is required for pathogenicity against insects. In order to characterize Ail functions in Photorhabdus, we showed that only ail2 Pl and pagC Pl had the ability, when expressed into Escherichia coli, to confer resistance to complement in human serum. However no effect in resistance to antimicrobial peptides was found. Thus, the role of Ail and PagC proteins in Photorhabdus life cycle is discussed.


bioRxiv | 2018

Changes in rearing conditions rapidly modify gut microbiota structure in Tenebrio molitor larvae

Marine Cambon; Jean-Claude Ogier; Anne Lanois; Jean-Baptiste Ferdy

The gut microbiota of multicellular organisms has been shown to play a key role in their host biology. In mammals, it has an invariant component, responsible for establishing a mutualistic relationship with the host. It also contains a dynamic fraction which facilitates adaptation in response to changes in the environment. These features have been well described in mammals, but little is known about microbiota stability or plasticity in insects. We assessed changes in microbiota composition and structure in a reared insect after a change in rearing conditions. We reared Tenebrio molitor (Coleoptera, Tenebrioninae) larvae for five days in soil samples from two river banks and analyzed their gut microbial communities by a metabarcoding technique, using the V3-V4 region of the 16S rRNA gene and the housekeeping gene gyrB. We found that soil-reared insects had a significantly more diverse microbiota than the control insects and that insects reared in soil from different sites had significantly different microbiota. We confirmed this trend by absolute quantification of the two mains fluctuating taxonomic groups: the Enterobacteriaceae family and the Pseudomonas genus, dominant in the soil-reared insects and in the control insects, respectively. Our results suggest the existence of a resident microbiota in T. molitor gut, but indicate that rearing changes can induce rapid and profound changes in the relative abundance of some of the members of this resident microbiota.

Collaboration


Dive into the Anne Lanois's collaboration.

Top Co-Authors

Avatar

Alain Givaudan

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Sylvie Pagès

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Grégory Jubelin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Claude Ogier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Noël Boemare

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Bernard Duvic

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander S. Mankin

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge