Anne-Laure Calendron
University of Hamburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne-Laure Calendron.
Optics Letters | 2015
Luis E. Zapata; Hua Lin; Anne-Laure Calendron; Huseyin Cankaya; Michael Hemmer; Fabian Reichert; W. Ronny Huang; Eduardo Granados; Kyung-Han Hong; Franz X. Kärtner
A cryogenic composite-thin-disk amplifier with amplified spontaneous emission (ASE) rejection is implemented that overcomes traditional laser system problems in high-energy pulsed laser drivers of high average power. A small signal gain of 8 dB was compared to a 1.5 dB gain for an uncapped thin-disk without ASE mitigation under identical pumping conditions. A strict image relayed 12-pass architecture using an off-axis vacuum telescope and polarization switching extracted 100 mJ at 250 Hz in high beam quality stretched 700 ps pulses of 0.6-nm bandwidth.
Optics Letters | 2015
Peter Kroetz; Axel Ruehl; Gourab Chatterjee; Anne-Laure Calendron; Krishna Murari; Huseyin Cankaya; Peng Li; Franz X. Kärtner; Ingmar Hartl; R. J. D. Miller
We demonstrate a Ho:YLF regenerative amplifier (RA) overcoming bifurcation instability and consequently achieving high extraction energies of 6.9 mJ at a repetition rate of 1 kHz with pulse-to-pulse fluctuations of 1.1%. Measurements of the output pulse energy, corroborated by numerical simulations, identify an operation point (OP) that allows high-energy pulse extraction at a minimum noise level. Complete suppression of the onset of bifurcation was achieved by gain saturation after each pumping cycle in the Ho:YLF crystal via lowering the repetition rate and cooling the crystal. Even for moderate cooling, a significant temperature dependence of the Ho:YLF RA performance was observed.
Optics Express | 2015
Chun-Lin Chang; Peter Krogen; Kyung-Han Hong; Luis E. Zapata; Jeffrey Moses; Anne-Laure Calendron; Houkun Liang; Chien-Jen Lai; Gregory J. Stein; Phillip D. Keathley; Guillaume Laurent; Franz X. Kärtner
We report on a diode-pumped, hybrid Yb-doped chirped-pulse amplification (CPA) laser system with a compact pulse stretcher and compressor, consisting of Yb-doped fiber preamplifiers, a room-temperature Yb:KYW regenerative amplifier (RGA), and cryogenic Yb:YAG multi-pass amplifiers. The RGA provides a relatively broad amplification bandwidth and thereby a long pulse duration to mitigate B-integral in the CPA chain. The ~1030-nm laser pulses are amplified up to 70 mJ at 1-kHz repetition rate, currently limited by available optics apertures, and then compressed to ~6 ps with high efficiency. The near-diffraction-limited beam focusing quality is demonstrated with M(x)(2) = 1.1 and M(y)(2) = 1.2. The shot-to-shot energy fluctuation is as low as ~1% (rms), and the long-term energy drift and beam pointing stability for over 8 hours measurement are ~3.5% and <6 μrad (rms), respectively. To the best of our knowledge, this hybrid laser system produces the most energetic picosecond pulses at kHz repetition rates among rod-type laser amplifiers. With an optically synchronized Ti:sapphire seed laser, it provides a versatile platform optimized for pumping optical parametric chirped-pulse amplification systems as well as driving inverse Compton scattered X-rays.
Optics Express | 2015
Anne-Laure Calendron; Huseyin Cankaya; G. Cirmi; Franz X. Kärtner
We generate white light supercontinuum from slightly sub-picosecond pulses at 1.03 µm and 515 nm. We compare the spectra and stability for various crystals, focusing conditions and pulse durations, and determine the best parameters for sub-picosecond driver pulse duration. Comparing the experimental observations with the theory of white-light generation from Brodeur and Chin, it appears that in this particular range of pump pulse duration, two mechanisms interact and prevent a catastrophic collapse of the beam: multi-photon excitation (typical for ~100-fs-long pulses) and avalanche ionization (typical for >1-ps pulses). The two processes both manifest themselves in different experimental observations.
arXiv: Accelerator Physics | 2016
W. Ronny Huang; Arya Fallahi; Xiaojun Wu; Huseyin Cankaya; Anne-Laure Calendron; Koustuban Ravi; Dongfang Zhang; Emilio A. Nanni; Kyung-Han Hong; Franz X. Kärtner
Ultrashort electron beams with narrow energy spread, high charge, and low jitter are essential for resolving phase transitions in metals, semiconductors, and molecular crystals. These semirelativistic beams, produced by phototriggered electron guns, are also injected into accelerators for x-ray light sources. The achievable resolution of these time-resolved electron diffraction or x-ray experiments has been hindered by surface field and timing jitter limitations in conventional RF guns, which thus far are 96 fs, respectively. A gun driven by optically-generated single-cycle THz pulses provides a practical solution to enable not only GV/m surface fields but also absolute timing stability, since the pulses are generated by the same laser as the phototrigger. Here, we demonstrate an all-optical THz gun yielding peak electron energies approaching 1 keV, accelerated by 300 MV/m THz fields in a novel micron-scale waveguide structure. We also achieve quasimonoenergetic, sub-keV bunches with 32 fC of charge, which can already be used for time-resolved low-energy electron diffraction. Such ultracompact, easy to implement guns driven by intrinsically synchronized THz pulses that are pumped by an amplified arm of the already present photoinjector laser provide a new tool with potential to transform accelerator based science.
Nature Photonics | 2018
Dongfang Zhang; Arya Fallahi; M. Hemmer; Xiaojun Wu; Moein Fakhari; Yi Hua; Huseyin Cankaya; Anne-Laure Calendron; Luis E. Zapata; Nicholas H. Matlis; Franz X. Kärtner
Acceleration and manipulation of electron bunches underlie most electron and X-ray devices used for ultrafast imaging and spectroscopy. New terahertz-driven concepts offer orders-of-magnitude improvements in field strengths, field gradients, laser synchronization and compactness relative to conventional radiofrequency devices, enabling shorter electron bunches and higher resolution with less infrastructure while maintaining high charge capacities (pC), repetition rates (kHz) and stability. We present a segmented terahertz electron accelerator and manipulator (STEAM) capable of performing multiple high-field operations on the six-dimensional phase space of ultrashort electron bunches. With this single device, powered by few-microjoule, single-cycle, 0.3 THz pulses, we demonstrate record terahertz acceleration of >30 keV, streaking with <10 fs resolution, focusing with >2 kT m–1 strength, compression to ~100 fs as well as real-time switching between these modes of operation. The STEAM device demonstrates the feasibility of terahertz-based electron accelerators, manipulators and diagnostic tools, enabling science beyond current resolution frontiers with transformative impact.By sending few-microjoule single-cycle terahertz pulses to a segmented terahertz electron accelerator and manipulator, 70 MV m–1 peak acceleration fields, 2 kT m–1 focusing gradients, 140 µrad fs–1 streaking gradient and bunch compression to 100 fs are achieved.
Optics Express | 2018
M. Hemmer; G. Cirmi; Koustuban Ravi; Fabian Reichert; Frederike Ahr; Luis E. Zapata; Oliver D. Mücke; Anne-Laure Calendron; Huseyin Cankaya; Damian N. Schimpf; N. H. Matlis; Franz X. Kärtner
We investigate a regime of parametric amplification in which the pump and signal waves are spectrally separated by only a few hundreds of GHz frequency - therefore resulting in a sub-THz frequency idler wave. Operating in this regime we find an optical parametric amplifier (OPA) behavior which is highly dissimilar to conventional OPAs. In this regime, we observe multiple three-wave mixing processes occurring simultaneously which results in spectral cascading around the pump and signal wave. Via numerical simulations, we elucidate the processes at work and show that cascaded optical parametric amplification offers a pathway toward THz-wave generation beyond the Manly-Rowe limit and toward the generation of high-energy, sparse frequency-combs.
conference on lasers and electro optics | 2016
W. Ronny Huang; Arya Fallahi; Xiaojun Wu; Emilio A. Nanni; Huseyin Cankaya; Anne-Laure Calendron; Dongfang Zhang; Koustuban Ravi; Kyung-Han Hong; Franz X. Kärtner
Strong-field, single-cycle THz fields accelerate electrons with peak energies of up to 0.75 keV in a millimeter-sized THz gun with bunch charge of 45 fC. Energy spreads as low as 5.8% were also achieved.
Proceedings of SPIE | 2016
Peter Kroetz; Axel Ruehl; Gourab Chatterjee; Anne-Laure Calendron; Krishna Muraria; Huseyin Cankaya; Franz X. Kärtnera; Ingmar Hartl; R. J. Dwayne Miller
We present results from our Ho:YLF regenerative amplifier (RA) producing up to 6.9 mJ at a repetition rate of 1 kHz and up to 12.9 mJ at a repetition rate of 10 Hz. At 1 kHz, we observe strongly bifurcating pulses, starting with certain round trip number, but the measurements identify a highly stable operation point that lies “hidden” beyond the instability region. This operation point allows the extraction of highly stable and high energetic output pulses. Suppression of bifurcation in our system is presented for repetition rates below 750 Hz and Ho:YLF crystal holder temperatures of 2.5 °C. We furthermore present a stability optimization routine for our Ho:YLF RA that was operated close to gain depletion at a repetition rate of 100 Hz. By varying the Ho:YLF crystal holder temperature the gain depletion level could be fine adjusted, resulting in a highly stable RA system with measured pulse fluctuations of only 0.35 %.
Optics Express | 2016
Xiaojun Wu; Anne-Laure Calendron; Koustuban Ravi; Chun Zhou; M. Hemmer; Fabian Reichert; Dongfang Zhang; Huseyin Cankaya; Luis E. Zapata; N. H. Matlis; Franz X. Kärtner
We demonstrate the generation of 100 GHz single-cycle pulses with up to 10 MW of peak power using optical rectification and broadband phase matching via the tilted pulse front (TPF) technique in lithium niobate. The optical driver is a cryogenically cooled Yb:YAG amplifier providing tens of mJ energy, ~5 ps long laser pulses. We obtain a high THz pulse energy up to 65 µJ with 31.6 MV/m peak electric field when focused close to its diffraction limit of 2.5 mm diameter. A high optical-to-THz energy conversion efficiency of 0.3% at 85 K is measured in agreement with numerical simulations. This source is of great interest for a broad range of applications, such as nonlinear THz field-matter interaction and charged particle acceleration for ultrafast electron diffraction and table-top X-ray sources.