Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne-Lie Blomström is active.

Publication


Featured researches published by Anne-Lie Blomström.


Journal of Clinical Microbiology | 2010

Detection of a Novel Astrovirus in Brain Tissue of Mink Suffering from Shaking Mink Syndrome by Use of Viral Metagenomics

Anne-Lie Blomström; Frederik Widén; Anne-Sofie Hammer; Sándor Belák; Mikael Berg

ABSTRACT In 2000, farmed mink kits in Denmark were affected by a neurological disorder. The characteristic clinical signs included shaking, staggering gait, and ataxia. The disease, given the name shaking mink syndrome, was reproduced by the inoculation of brain homogenate from affected mink kits into healthy ones. However, the etiology remained unknown despite intensive efforts. In this study, random amplification and large-scale sequencing were used, and an astrovirus was detected in the brain tissue of three experimentally infected mink kits. This virus also was found in the brain of three mink kits naturally displaying the disease but not in the six healthy animals investigated. The complete coding region of the detected astrovirus was sequenced and compared to those of both a mink astrovirus associated with preweaning diarrhea and to a recently discovered human astrovirus associated with a case of encephalitis in a boy with x-linked agammaglobulinemia. The identities were 80.4 and 52.3%, respectively, showing that the virus described in this study was more similar to the preweaning diarrhea mink astrovirus. For the nonstructural coding regions the sequence identity was around 90% compared to that of the astrovirus, which is associated with preweaning diarrhea in mink. The region coding for the structural protein was more diverse, showing only 67% sequence identity. This finding is of interest not only because the detected virus may be the etiological agent of the shaking mink syndrome but also because this is one of the first descriptions of an astrovirus found in the central nervous system of animals.


Virus Research | 2009

Detection of a novel porcine boca-like virus in the background of porcine circovirus type 2 induced postweaning multisystemic wasting syndrome.

Anne-Lie Blomström; Sándor Belák; Caroline Fossum; John McKillen; Gordon Allan; Per Wallgren; Mikael Berg

Porcine circovirus type 2 (PCV-2) has been found to be the causative agent of postweaning multisystemic wasting syndrome (PMWS). However, PCV-2 is a ubiquitous virus in the swine population and a majority of pigs infected with PCV-2 do not develop the disease. Different factors such as age, maintenance, the genetics of PCV-2, other pathogens, etc. have been suggested to contribute to the development of PMWS. However, so far no proven connection between any of these factors and the disease development has been found. In this study we explored the possible presence of other so far unknown DNA containing infectious agents in lymph nodes collected from Swedish pigs with confirmed PMWS through random amplification and high-throughput sequencing. Although the vast majority of the amplified genetic sequences belonged to PCV-2, we also found genome sequences of Torque Teno virus (TTV) and of a novel parvovirus. The detection of TTV was expected since like PCV-2, TTV has been found to have high prevalence in pigs around the world. We were able to amplify a longer region of the parvovirus genome, consisting of the entire NP1 and partial VP1/2. By comparative analysis of the nucleotide sequences and phylogenetic studies we propose that this is a novel porcine parvovirus, with genetic relationship to bocaviruses.


Virus Research | 2010

Studies of porcine circovirus type 2, porcine boca-like virus and torque teno virus indicate the presence of multiple viral infections in postweaning multisystemic wasting syndrome pigs.

Anne-Lie Blomström; Sándor Belák; Caroline Fossum; Lisbeth Fuxler; Per Wallgren; Mikael Berg

In a previous study, using random amplification and large-scale sequencing technology, we identified a novel porcine parvovirus belonging to the genus Bocavirus in the background of porcine circovirus type 2 (PCV-2) in Swedish pigs with postweaning multisystemic wasting syndrome (PMWS). In addition to bocavirus we demonstrated the presence of torque teno virus (TTV) genogroups 1 and 2 in these cases of PMWS, indicating the simultaneous presence of several viruses in this disease complex. In the present study, 34 PMWS-affected animals and 24 pigs without PMWS were screened by PCR for the presence of PCV-2, TTV-1, TTV-2 and porcine boca-like virus (Pbo-likeV). The studies revealed the following infection rates in the PMWS-affected pigs: PCV-2 100%, TTV-1 77%, TTV-2 94% and Pbo-likeV 88%. In comparison, the pigs without PMWS had the following rates: PCV-2 80%, TTV-1 79%, TTV-2 83% and Pbo-likeV 46%. The sequence identity between the different Swedish Pbo-likeV sequences ranged between 98% and 100%. By checking co-infection, it was found that 71% of the PMWS-affected pigs harbor simultaneously all these viruses. As a contrast, in the group without PMWS only 33% of the animals were positive simultaneously for these viruses. These observations indicate a multiple viral infection in PMWS-affected pigs. It has to be studied further if the clinical manifestation of PMWS might be due to synergistic effects of different viruses acting together.


Veterinary Quarterly | 2011

Viral metagenomics as an emerging and powerful tool in veterinary medicine

Anne-Lie Blomström

New diseases continue to emerge in both human and animal populations, and the importance of animals, as reservoirs for viruses that can cause zoonoses are evident. Thus, an increased knowledge of the viral flora in animals, both in healthy and diseased individuals, is important both for animal and human health. Viral metagenomics is a culture-independent approach that is used to investigate the complete viral genetic populations of a sample. This review describes and discusses the different possible steps of a viral metagenomic study utilizing sequence-independent amplification, high-throughput sequencing, and bioinformatics to identify viruses. With this technology, multiple viruses can be detected simultaneously and novel and highly divergent viruses can be discovered and genetically characterized for the first time. This review also briefly discusses the applications of viral metagenomics in veterinary science and lists some of the viruses discovered within this field.


Viruses | 2013

Non-Structural Proteins of Arthropod-Borne Bunyaviruses: Roles and Functions

Saleh A. Eifan; Esther Schnettler; Isabelle Dietrich; Alain Kohl; Anne-Lie Blomström

Viruses within the Bunyaviridae family are tri-segmented, negative-stranded RNA viruses. The family includes several emerging and re-emerging viruses of humans, animals and plants, such as Rift Valley fever virus, Crimean-Congo hemorrhagic fever virus, La Crosse virus, Schmallenberg virus and tomato spotted wilt virus. Many bunyaviruses are arthropod-borne, so-called arboviruses. Depending on the genus, bunyaviruses encode, in addition to the RNA-dependent RNA polymerase and the different structural proteins, one or several non-structural proteins. These non-structural proteins are not always essential for virus growth and replication but can play an important role in viral pathogenesis through their interaction with the host innate immune system. In this review, we will summarize current knowledge and understanding of insect-borne bunyavirus non-structural protein function(s) in vertebrate, plant and arthropod.


Acta Veterinaria Scandinavica | 2014

Astrovirus as a possible cause of congenital tremor type AII in piglets

Anne-Lie Blomström; Cecilia Ley; Magdalena Jacobson

BackgroundCongenital tremor is associated with demyelination of the brain and spinal cord and is clinically noted as outbreaks of trembling and shaking in newborn piglets during a limited time-period. Six forms of the disease have been described, where form AII may be caused by an, as yet, unidentified viral infection. This study aimed to investigate the presence of astrovirus and circovirus by sequencing and polymerase chain reaction (PCR) analysis and by relating the findings to the occurrence of disease and lesions in the brain, in 4–6 days-old piglets obtained from a clinical outbreak of congenital tremor.ResultsIn piglets with congenital tremor, there were mild to moderate vacuolar changes of the white matter in the cerebrum, brain stem and cerebellum. In healthy piglets, less conspicuous vacuolar changes were detected. One healthy and one diseased piglet were positive for porcine circovirus type 2. The nested pan-PCR showed the presence of astrovirus in at least one brain region in all piglets and by sequencing, two different porcine astrovirus lineages were identified.ConclusionsThe results do not support previous studies identifying porcine circovirus type 2 as the cause of congenital tremor. The demonstration of astrovirus in the brain of piglets suffering from congenital tremor is interesting. However, astrovirus was demonstrated in both healthy and diseased individuals and therefore, further studies are warranted to determine the possible involvement of astrovirus in the pathogenesis of congenital tremor in pigs.


Virology Journal | 2012

Viral metagenomic analysis of bushpigs (Potamochoerus larvatus) in Uganda identifies novel variants of Porcine parvovirus 4 and Torque teno sus virus 1 and 2

Anne-Lie Blomström; Karl Ståhl; Charles Masembe; Edward Okoth; Ademun Rose Okurut; Patrick Atmnedi; Stephen J. Kemp; Richard L. Bishop; Sándor Belák; Mikael Berg

BackgroundAs a result of rapidly growing human populations, intensification of livestock production and increasing exploitation of wildlife habitats for animal agriculture, the interface between wildlife, livestock and humans is expanding, with potential impacts on both domestic animal and human health. Wild animals serve as reservoirs for many viruses, which may occasionally result in novel infections of domestic animals and/or the human population. Given this background, we used metagenomics to investigate the presence of viral pathogens in sera collected from bushpigs (Potamochoerus larvatus), a nocturnal species of wild Suid known to move between national parks and farmland, in Uganda.ResultsApplication of 454 pyrosequencing demonstrated the presence of Torque teno sus virus (TTSuV), porcine parvovirus 4 (PPV4), porcine endogenous retrovirus (PERV), a GB Hepatitis C–like virus, and a Sclerotinia hypovirulence-associated-like virus in sera from the bushpigs. PCR assays for each specific virus combined with Sanger sequencing revealed two TTSuV-1 variants, one TTSuV-2 variant as well as PPV4 in the serum samples and thereby confirming the findings from the 454 sequencing.ConclusionsUsing a viral metagenomic approach we have made an initial analysis of viruses present in bushpig sera and demonstrated for the first time the presence of PPV4 in a wild African Suid. In addition we identified novel variants of TTSuV-1 and 2 in bushpigs.


Journal of General Virology | 2014

NSs protein of Schmallenberg virus counteracts the antiviral response of the cell by inhibiting its transcriptional machinery

Gerald Barry; Mariana Varela; Maxime Ratinier; Anne-Lie Blomström; Marco Caporale; Frauke Seehusen; Kerstin Hahn; Esther Schnettler; Wolfgang Baumgärtner; Alain Kohl; Massimo Palmarini

Bunyaviruses have evolved a variety of strategies to counteract the antiviral defence systems of mammalian cells. Here we show that the NSs protein of Schmallenberg virus (SBV) induces the degradation of the RPB1 subunit of RNA polymerase II and consequently inhibits global cellular protein synthesis and the antiviral response. In addition, we show that the SBV NSs protein enhances apoptosis in vitro and possibly in vivo, suggesting that this protein could be involved in SBV pathogenesis in different ways.


Virology Journal | 2011

Development of an in situ assay for simultaneous detection of the genomic and replicative form of PCV2 using padlock probes and rolling circle amplification

Sara Henriksson; Anne-Lie Blomström; Lisbeth Fuxler; Caroline Fossum; Mikael Berg; Mats Nilsson

BackgroundIn this study we utilized padlock probes and rolling circle amplification as a mean to detect and study the replication of porcine circovirus type 2 (PCV2) in cultured cells and in infected tissue. Porcine circovirus type 2 is a single-stranded circular DNA virus associated with several severe diseases, porcine circovirus diseases (PCVD) in pigs, such as postweaning multisystemic wasting syndrome. The exact reason and mechanisms behind the trigger of PCV2 replication that is associated with these diseases is not well-known. The virus replicates with rolling circle replication and thus also exists as a double-stranded replicative form.ResultsBy applying padlock probes and rolling circle amplification we could not only visualise the viral genome but also discriminate between the genomic and the replicative strand in situ. The genomic strand existed in higher numbers than the replicative strand. The virus accumulated in certain nuclei but also spread into the cytoplasm of cells in the surrounding tissue. In cultured cells the average number of signals increased with time after infection.ConclusionsWe have developed a method for detection of both strands of PCV2 in situ that can be useful for studies of replication and in situ detection of PCV2 as well as of DNA viruses in general.


Transboundary and Emerging Diseases | 2014

Serological Screening Suggests Presence of Schmallenberg Virus in Cattle, Sheep and Goat in the Zambezia Province, Mozambique

Anne-Lie Blomström; I. Scharin; J. Figueiredo; Ofélia Nhambirre; A. P. Abilio; José Fafetine; Mikael Berg

Schmallenberg virus (SBV) is a novel Orthobunyavirus within the family Bunyaviridae belonging to the Simbu serogroup. Schmallenberg virus infects ruminants and has since its discovery in the autumn 2011 been detected/spread to large parts of Europe. Most bunyaviruses are arboviruses, and SBV has been detected in biting midges in different European countries, suggesting that they may play a role in the transmission of the virus. It is not known how SBV was introduced to Europe and if SBV is present in countries outside of Europe. Thus, in this study, we conducted a serological screening for SBV antibodies in cattle (no. 79), sheep (no. 145) and goat (no. 141) in the Zambezia Province in Mozambique during September 2013. The results show a high percentage of antibody-positive animals. All farms tested had seropositive animals; cattle displayed the highest prevalence with 100% positive animals. Sheep and goat also displayed high number of positive animals with a 43–97% and 72–100% within-herd seroprevalence, respectively. This initial serological screening suggests that SBV is present on the African continent. However, cross-reactivity with other members of the Simbu serogroup cannot be ruled out, and further studies are needed to identify and characterize the virus responsible for the antibody-positive results.

Collaboration


Dive into the Anne-Lie Blomström's collaboration.

Top Co-Authors

Avatar

Mikael Berg

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Sándor Belák

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Caroline Fossum

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Per Wallgren

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar

José Fafetine

Eduardo Mondlane University

View shared research outputs
Top Co-Authors

Avatar

Jonas Johansson Wensman

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Karl Ståhl

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harindranath Cholleti

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge