Anne-Lise Pitel
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne-Lise Pitel.
Cerebral Cortex | 2011
Sandra Chanraud; Anne-Lise Pitel; Adolf Pfefferbaum; Edith V. Sullivan
The default mode network (DMN) comprises brain structures maximally active at rest. Disturbance of network nodes or their connections occurs with some neuropsychiatric conditions and may underlie associated dysfunction. DMN connectivity has not been examined in alcoholism, which is marked by compromised DMN nodes and impaired spatial working memory. To test whether performance would be related to DMN integrity, we examined DMN functional connectivity using functional magnetic resonance imaging (fMRI) data and graph theory analysis. We assumed that disruption of short paths between network nodes would attenuate processing efficiency. Alcoholics and controls were scanned at rest and during a spatial working memory task. At rest, the spontaneous slow fluctuations of fMRI signals in the posterior cingulate and cerebellar regions in alcoholics were less synchronized than in controls, indicative of compromised functional connectivity. Graph theory analysis indicated that during rest, alcoholics had significantly lower efficiency indices than controls between the posterior cingulate seed and multiple cerebellar sites. Greater efficiency in several connections correlated with longer sobriety in alcoholics. During the task, on which alcoholics performed on par with controls, connectivity between the left posterior cingulate seed and left cerebellar regions was more robust in alcoholics than controls and suggests compensatory networking to achieve normal performance.
Alcoholism: Clinical and Experimental Research | 2008
Anne-Lise Pitel; Hélène Beaunieux; Thomas A. Witkowski; François Vabret; Vincent de La Sayette; Fausto Viader; Béatrice Desgranges; Francis Eustache
BACKGROUND The exact nature of episodic and working memory impairments in alcoholic Korsakoff patients (KS) remains unclear, as does the specificity of these neuropsychological deficits compared with those of non-Korsakoff alcoholics (AL). The goals of the present study were therefore to (1) specify the nature of episodic and working memory impairments in KS, (2) determine the specificity of the KS neuropsychological profile compared with the AL profile, and (3) observe the distribution of individual performances within the 2 patient groups. METHODS We investigated episodic memory (encoding and retrieval abilities, contextual memory and state of consciousness associated with memories), the slave systems of working memory (phonological loop, visuospatial sketchpad and episodic buffer) and executive functions (inhibition, flexibility, updating and integration abilities) in 14 strictly selected KS, 40 AL and 55 control subjects (CS). RESULTS Compared with CS, KS displayed impairments of episodic memory encoding and retrieval, contextual memory, recollection, the slave systems of working memory and executive functions. Although episodic memory was more severely impaired in KS than in AL, the single specificity of the KS profile was a disproportionately large encoding deficit. Apart from organizational and updating abilities, the slave systems of working memory and inhibition, flexibility and integration abilities were impaired to the same extent in both alcoholic groups. However, some KS were unable to complete the most difficult executive tasks. There was only a partial overlap of individual performances by KS and AL for episodic memory and a total mixture of the 2 groups for working memory. CONCLUSIONS Korsakoffs syndrome encompasses impairments of the different episodic and working memory components. AL and KS displayed similar profiles of episodic and working memory deficits, in accordance with neuroimaging investigations showing similar patterns of brain damage in both alcoholic groups.
Neurology | 2012
Anne-Lise Pitel; G. Chételat; A P Le Berre; B. Desgranges; Francis Eustache; Hélène Beaunieux
Objective: To distinguish, in patients with Korsakoff syndrome (KS), the structural brain abnormalities shared with alcoholic patients without KS (AL), from those specific to KS. Methods: MRI data were collected in 11 alcoholic patients with KS, 34 alcoholic patients without KS, and 25 healthy control subjects (CS). Gray and white matter volumes were compared in the 3 groups using a voxel-based approach. Results: A conjunction analysis indicated a large pattern of shared gray and white matter volume deficits in AL and KS. There were graded effects of volume deficits (KS < AL < CS) in the medial portion of the thalami, hypothalamus (mammillary bodies), left insula, and genu of the corpus callosum. Abnormalities in the left thalamic radiation were observed only in KS. Conclusions: Our results indicate considerable similarities in the pattern of gray and white matter damage in AL and KS. This finding confirms the widespread neurotoxic effect of chronic alcohol consumption. Only a few cerebral regions, including the medial thalami, mammillary bodies, and corpus callosum, were more severely damaged in KS than in AL. The continuum of macrostructural damage from AL to KS is therefore restricted to key brain structures. Longitudinal investigations are required to determine whether alcoholic patients with medial thalamic volumes that are comparable to those of patients with KS are at increased risk of developing KS.
Neuropsychopharmacology | 2011
Anne-Lise Pitel; Natalie M. Zahr; Karen Jackson; Stephanie A. Sassoon; Margaret J. Rosenbloom; Adolf Pfefferbaum; Edith V. Sullivan
The purpose of this study was to determine whether meeting historical criteria for unsuspected Wernickes encephalopathy (WE), largely under-diagnosed in vivo, explains why some alcoholics have severe neuropsychological deficits, whereas others, with a similar drinking history, exhibit preserved performance. Demographic, clinical, alcohol related, and neuropsychological measures were collected in 56 abstinent alcoholics and 38 non-alcohol-dependent volunteers. Alcoholics were classified using the clinical criteria established by Caine et al (1997) and validated in their neuropathological study of alcoholic cases. Our alcoholics who met a single criterion were considered ‘at risk for WE’ and those with two or more criteria with ‘signs of WE’. Whole blood thiamine was also measured in 22 of the comparison group and 28 alcoholics. Of the alcoholics examined, 27% met no criteria, 57% were at risk for WE, and 16% had signs of WE. Neuropsychological performance of the alcoholic subgroups was graded, with those meeting zero criteria not differing from controls, those meeting one criterion presenting mild-to-moderate deficits on some of the functional domains, and those meeting two or more criteria having the most severe deficits on each of the domains examined. Thiamine levels were selectively related to memory performance in the alcoholics. Preclinical signs of WE can be diagnosed in vivo, enabling the identification of ostensibly ‘uncomplicated’ alcoholics who are at risk for neuropsychological complications. The graded effects in neuropsychological performance suggest that the presence of signs of WE explains, at least partially, the heterogeneity of alcoholism-related cognitive and motor deficits.
Neuropsychopharmacology | 2010
Sandra Chanraud; Anne-Lise Pitel; Torsten Rohlfing; Adolf Pfefferbaum; Edith V. Sullivan
Controversy exists regarding the role of cerebellar systems in cognition and whether working memory compromise commonly marking alcoholism can be explained by compromise of nodes of corticocerebellar circuitry. We tested 17 alcoholics and 31 age-matched controls with dual-task, working memory paradigms. Interference tasks competed with verbal and spatial working memory tasks using low (three item) or high (six item) memory loads. Participants also underwent structural MRI to obtain volumes of nodes of the frontocerebellar system. On the verbal working memory task, both groups performed equally. On the spatial working memory with the high-load task, the alcoholic group was disproportionately more affected by the arithmetic distractor than were controls. In alcoholics, volumes of the left thalamus and left cerebellar Crus I volumes were more robust predictors of performance in the spatial working memory task with the arithmetic distractor than the left frontal superior cortex. In controls, volumes of the right middle frontal gyrus and right cerebellar Crus I were independent predictors over the left cerebellar Crus I, left thalamus, right superior parietal cortex, or left middle frontal gyrus of spatial working memory performance with tracking interference. The brain–behavior correlations suggest that alcoholics and controls relied on the integrity of certain nodes of corticocerebellar systems to perform these verbal and spatial working memory tasks, but that the specific pattern of relationships differed by group. The resulting brain structure–function patterns provide correlational support that components of this corticocerebellar system not typically related to normal performance in dual-task conditions may be available to augment otherwise dampened performance by alcoholics.
Cerebral Cortex | 2013
Sandra Chanraud; Anne-Lise Pitel; Eva M. Müller-Oehring; Adolf Pfefferbaum; Edith V. Sullivan
Abnormal brain activity may reflect compensation when observed in patients who perform normally on tests requiring functions usually observed as impaired. Operational criteria defining compensation have been described and aid in distinguishing compensatory from chance events. Here, we tested whether previously published functional magnetic resonance imaging data acquired in 15 recovering alcoholics and 15 controls at rest and while performing a spatial working memory task would fulfill criteria defining functional compensation. Multivariate analysis tested how well abnormal activation in the affected group predicted normal performance, despite low or no activation in brain regions invoked by controls to accomplish the same task. By identifying networks that uniquely and positively correlated with good performance, we provide evidence for compensatory recruitment of cerebellar-based functional networks by alcoholics. Whereas controls recruited prefrontal-cerebellar regions VI/Crus I known to subserve working memory, alcoholics recruited 2 other parallel frontocerebellar loops: dorsolateral prefrontal cortex (DLPFC)-cerebellar VIII system during rest and DLPFC-cerebellar VI system while task engaged. Greater synchronous activity between cerebellar lobule VIII and DLPFC at rest and greater activation within cerebellar lobule VI and DLPFC during task predicted better working memory performance. Thus, higher intrinsic cerebellar activity in alcoholics was an adequate condition for triggering task-relevant activity in the frontal cortex required for normal working memory performance.
Biological Psychiatry | 2013
Edith V. Sullivan; Eva M. Müller-Oehring; Anne-Lise Pitel; Sandra Chanraud; Ajit Shankaranarayanan; David C. Alsop; Torsten Rohlfing; Adolf Pfefferbaum
BACKGROUND Alcoholism can disrupt neural synchrony between nodes of intrinsic functional networks that are maximally active when resting relative to engaging in a task, the default mode network (DMN) pattern. Untested, however, are whether the DMN in alcoholics can rebound normally from the relatively depressed task state to the active resting state and whether local perfusion deficits could disrupt network synchrony when switching from conditions of rest to task to rest, thereby indicating a physiological mechanism of neural network adaptation capability. METHODS Whole-brain, three-dimensional pulsed-continuous arterial spin labeling provided measurements of regional cerebral blood flow (CBF) in 12 alcoholics and 12 control subjects under three conditions: pretask rest, spatial working-memory task, and posttask rest. RESULTS With practice, alcoholics and control subjects achieved similar task accuracy and reaction times. Both groups exhibited a high-low-high pattern of perfusion levels in DMN regions during the rest-task-rest runs and the opposite pattern in posterior and cerebellar regions known to be associated with spatial working memory. Alcoholics showed selective differences from control subjects in the rest-task-rest CBF pattern in the anterior precuneus and CBF level in the insula, a hub of the salience network. Connectivity analysis identified activation synchrony from an insula seed to salience nodes (parietal, medial frontal, anterior cingulate cortices) in control subjects only. CONCLUSIONS We propose that attenuated insular CBF is a mechanism underlying compromised connectivity among salience network nodes. This local perfusion deficit in alcoholics has the potential to impair ability to switch from cognitive states of interoceptive cravings to cognitive control for curbing internal urges.
Neuropsychology Review | 2010
Natalie M. Zahr; Anne-Lise Pitel; Sandra Chanraud; Edith V. Sullivan
Neuropathological, neuropsychological, and neuroimaging studies of human alcoholism provide evidence for degradation of frontal, pontine, thalamic, and cerebellar brain sites and disturbed associated functions. Current studies using neuroimaging combined with examination of executive functions, traditionally considered the sole purview of the frontal lobes, have identified a role for the cerebellum serving as a compensatory processing adjunct to enable normal performance on challenging tasks tapping executive functions. This overview proposes that disruption of an executive frontocerebellar network is a major contributor to characteristic behaviors of alcoholism that, on the one hand, enable alcohol use disorders, and on the other hand, lead to compensation for dysfunctions in alcoholism traditionally considered frontally-based.
Memory | 2006
Hélène Beaunieux; Valérie Hubert; Thomas A. Witkowski; Anne-Lise Pitel; Sandrine Rossi; Jean-Marie Danion; Béatrice Desgranges; Francis Eustache
Procedural memory is characterised by a relative resistance to pathology, making its assessment of the utmost importance. However, few studies have looked at the cognitive processes involved in cognitive procedural learning. In an initial experiment, we studied the role of different cognitive functions in massed cognitive procedural learning. Our results confirmed the existence of three separate learning phases and, for the first time, demonstrated the involvement of episodic memory and executive functions in the first learning phase. In a second experiment, we studied the effect of distributed learning conditions on the dynamics of procedural learning. This second study confirmed our results but showed that these conditions slow down the process of cognitive procedural learning. Our overall findings call into question the status of functionally autonomous memory system that is currently allotted to procedural memory, and suggest that the role of nonprocedural cognitive components should be taken into account in patient rehabilitation.
Neuropsychology Review | 2012
Rosemary Fama; Anne-Lise Pitel; Edith V. Sullivan
A profound anterograde memory deficit for information, regardless of the nature of the material, is the hallmark of Korsakoff syndrome, an amnesic condition resulting from severe thiamine (vitamin B1) deficiency. Since the late nineteenth century when the Russian physician, S. S. Korsakoff, initially described this syndrome associated with “polyneuropathy,” the observed global amnesia has been a primary focus of neuroscience and neuropsychology. In this review we highlight the historical studies that examined anterograde episodic memory processes in KS, present a timeline and evidence supporting the myriad theories proffered to account for this memory dysfunction, and summarize what is known about the neuroanatomical correlates and neural systems presumed affected in KS. Rigorous study of KS amnesia and associated memory disorders of other etiologies provide evidence for distinct mnemonic component processes and neural networks imperative for normal declarative and nondeclarative memory abilities and for mnemonic processes spared in KS, from whence emerged the appreciation that memory is not a unitary function. Debate continues regarding the qualitative and quantitative differences between KS and other amnesias and what brain regions and neural pathways are necessary and sufficient to produce KS amnesia.