Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne M. Evans is active.

Publication


Featured researches published by Anne M. Evans.


Analytical Chemistry | 2009

Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems.

Anne M. Evans; Corey Donald DeHaven; Tom Barrett; Matthew W. Mitchell; Eric Milgram

To address the challenges associated with metabolomics analyses, such as identification of chemical structures and elimination of experimental artifacts, we developed a platform that integrated the chemical analysis, including identification and relative quantification, data reduction, and quality assurance components of the process. The analytical platform incorporated two separate ultrahigh performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS(2)) injections; one injection was optimized for basic species, and the other was optimized for acidic species. This approach permitted the detection of 339 small molecules, a total instrument analysis time of 24 min (two injections at 12 min each), while maintaining a median process variability of 9%. The resulting MS/MS(2) data were searched against an in-house generated authentic standard library that included retention time, molecular weight (m/z), preferred adducts, and in-source fragments as well as their associated MS/MS spectra for all molecules in the library. The library allowed the rapid and high-confidence identification of the experimentally detected molecules based on a multiparameter match without need for additional analyses. This integrated platform enabled the high-throughput collection and relative quantitative analysis of analytical data and identified a large number and broad spectrum of molecules with a high degree of confidence.


Pharmacogenomics | 2008

Analysis of the adult human plasma metabolome.

Kay A. Lawton; Alvin Berger; Matthew W. Mitchell; K. Eric Milgram; Anne M. Evans; Lining Guo; Richard W Hanson; Satish C. Kalhan; John Ryals; Michael V. Milburn

OBJECTIVE It is well established that disease states are associated with biochemical changes (e.g., diabetes/glucose, cardiovascular disease/cholesterol), as are responses to chemical agents (e.g., medications, toxins, xenobiotics). Recently, nontargeted methods have been used to identify the small molecules (metabolites) in a biological sample to uncover many of the biochemical changes associated with a disease state or chemical response. Given that these experimental results may be influenced by the composition of the cohort, in the present study we assessed the effects of age, sex and race on the relative concentrations of small molecules (metabolites) in the blood of healthy adults. METHODS Using gas- and liquid-chromatography in combination with mass spectrometry, a nontargeted metabolomic analysis was performed on plasma collected from an age- and sex-balanced cohort of 269 individuals. RESULTS Of the more than 300 unique compounds that were detected, significant changes in the relative concentration of more than 100 metabolites were associated with age. Many fewer differences were associated with sex and fewer still with race. Changes in protein, energy and lipid metabolism, as well as oxidative stress, were observed with increasing age. Tricarboxylic acid intermediates, creatine, essential and nonessential amino acids, urea, ornithine, polyamines and oxidative stress markers (e.g., oxoproline, hippurate) increased with age. Compounds related to lipid metabolism, including fatty acids, carnitine, beta-hydroxybutyrate and cholesterol, were lower in the blood of younger individuals. By contrast, relative concentrations of dehydroepiandrosterone-sulfate (a proposed antiaging androgen) were lowest in the oldest age group. Certain xenobiotics (e.g., caffeine) were higher in older subjects, possibly reflecting decreases in hepatic cytochrome P450 activity. CONCLUSIONS Our nontargeted analytical approach detected a large number of metabolites, including those that were found to be statistically altered with age, sex or race. Age-associated changes were more pronounced than those related to differences in sex or race in the population group we studied. Age, sex and race can be confounding factors when comparing different groups in clinical studies. Future studies to determine the influence of diet, lifestyle and medication are also warranted.


Journal of Cheminformatics | 2010

Organization of GC/MS and LC/MS metabolomics data into chemical libraries

Corey Donald DeHaven; Anne M. Evans; Hongping Dai; Kay A. Lawton

BackgroundMetabolomics experiments involve generating and comparing small molecule (metabolite) profiles from complex mixture samples to identify those metabolites that are modulated in altered states (e.g., disease, drug treatment, toxin exposure). One non-targeted metabolomics approach attempts to identify and interrogate all small molecules in a sample using GC or LC separation followed by MS or MSn detection. Analysis of the resulting large, multifaceted data sets to rapidly and accurately identify the metabolites is a challenging task that relies on the availability of chemical libraries of metabolite spectral signatures. A method for analyzing spectrometry data to identify and Quantify Individual Components in a Sample, (QUICS), enables generation of chemical library entries from known standards and, importantly, from unknown metabolites present in experimental samples but without a corresponding library entry. This method accounts for all ions in a sample spectrum, performs library matches, and allows review of the data to quality check library entries. The QUICS method identifies ions related to any given metabolite by correlating ion data across the complete set of experimental samples, thus revealing subtle spectral trends that may not be evident when viewing individual samples and are likely to be indicative of the presence of one or more otherwise obscured metabolites.ResultsLC-MS/MS or GC-MS data from 33 liver samples were analyzed simultaneously which exploited the inherent biological diversity of the samples and the largely non-covariant chemical nature of the metabolites when viewed over multiple samples. Ions were partitioned by both retention time (RT) and covariance which grouped ions from a single common underlying metabolite. This approach benefitted from using mass, time and intensity data in aggregate over the entire sample set to reject outliers and noise thereby producing higher quality chemical identities. The aggregated data was matched to reference chemical libraries to aid in identifying the ion set as a known metabolite or as a new unknown biochemical to be added to the library.ConclusionThe QUICS methodology enabled rapid, in-depth evaluation of all possible metabolites (known and unknown) within a set of samples to identify the metabolites and, for those that did not have an entry in the reference library, to create a library entry to identify that metabolite in future studies.


PLOS Genetics | 2012

Mining the Unknown: A Systems Approach to Metabolite Identification Combining Genetic and Metabolic Information

Jan Krumsiek; Karsten Suhre; Anne M. Evans; Matthew W. Mitchell; Robert P. Mohney; Michael V. Milburn; Brigitte Wägele; Werner Römisch-Margl; Thomas Illig; Jerzy Adamski; Christian Gieger; Fabian J. Theis; Gabi Kastenmüller

Recent genome-wide association studies (GWAS) with metabolomics data linked genetic variation in the human genome to differences in individual metabolite levels. A strong relevance of this metabolic individuality for biomedical and pharmaceutical research has been reported. However, a considerable amount of the molecules currently quantified by modern metabolomics techniques are chemically unidentified. The identification of these “unknown metabolites” is still a demanding and intricate task, limiting their usability as functional markers of metabolic processes. As a consequence, previous GWAS largely ignored unknown metabolites as metabolic traits for the analysis. Here we present a systems-level approach that combines genome-wide association analysis and Gaussian graphical modeling with metabolomics to predict the identity of the unknown metabolites. We apply our method to original data of 517 metabolic traits, of which 225 are unknowns, and genotyping information on 655,658 genetic variants, measured in 1,768 human blood samples. We report previously undescribed genotype–metabotype associations for six distinct gene loci (SLC22A2, COMT, CYP3A5, CYP2C18, GBA3, UGT3A1) and one locus not related to any known gene (rs12413935). Overlaying the inferred genetic associations, metabolic networks, and knowledge-based pathway information, we derive testable hypotheses on the biochemical identities of 106 unknown metabolites. As a proof of principle, we experimentally confirm nine concrete predictions. We demonstrate the benefit of our method for the functional interpretation of previous metabolomics biomarker studies on liver detoxification, hypertension, and insulin resistance. Our approach is generic in nature and can be directly transferred to metabolomics data from different experimental platforms.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Plasma metabolomic profiles enhance precision medicine for volunteers of normal health

Lining Guo; Michael V. Milburn; John A. Ryals; Shaun Lonergan; Matthew W. Mitchell; Jacob E. Wulff; Danny Alexander; Anne M. Evans; Brandi Bridgewater; Luke A.D. Miller; Manuel L. Gonzalez-Garay; C. Thomas Caskey

Significance Metabolomics has been increasingly recognized as a powerful functional tool that integrates the impacts from genetics, environment, microbiota, and xenobiotics. We used a broad-spectrum metabolomics platform to analyze plasma samples from 80 adults of normal health. The comprehensive metabolic profiles provided a functional readout to assess the penetrance of gene mutations identified by whole-exome sequencing on these individuals. Conversely, metabolic abnormalities identified by statistical analysis uncovered potential damaging mutations that were previously unappreciated. Additionally, we found metabolic signatures consistent with early signs of disease conditions and drug effects associated with efficacy and toxicity. Our findings demonstrate that metabolomics could be an effective tool in precision medicine for disease risk assessment and customized drug therapy in clinics. Precision medicine, taking account of human individuality in genes, environment, and lifestyle for early disease diagnosis and individualized therapy, has shown great promise to transform medical care. Nontargeted metabolomics, with the ability to detect broad classes of biochemicals, can provide a comprehensive functional phenotype integrating clinical phenotypes with genetic and nongenetic factors. To test the application of metabolomics in individual diagnosis, we conducted a metabolomics analysis on plasma samples collected from 80 volunteers of normal health with complete medical records and three-generation pedigrees. Using a broad-spectrum metabolomics platform consisting of liquid chromatography and GC coupled with MS, we profiled nearly 600 metabolites covering 72 biochemical pathways in all major branches of biosynthesis, catabolism, gut microbiome activities, and xenobiotics. Statistical analysis revealed a considerable range of variation and potential metabolic abnormalities across the individuals in this cohort. Examination of the convergence of metabolomics profiles with whole-exon sequences (WESs) provided an effective approach to assess and interpret clinical significance of genetic mutations, as shown in a number of cases, including fructose intolerance, xanthinuria, and carnitine deficiency. Metabolic abnormalities consistent with early indications of diabetes, liver dysfunction, and disruption of gut microbiome homeostasis were identified in several volunteers. Additionally, diverse metabolic responses to medications among the volunteers may assist to identify therapeutic effects and sensitivity to toxicity. The results of this study demonstrate that metabolomics could be an effective approach to complement next generation sequencing (NGS) for disease risk analysis, disease monitoring, and drug management in our goal toward precision care.


Nature Genetics | 2017

Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites

Tao Long; Michael A. Hicks; Hung-Chun Yu; William H. Biggs; Ewen F. Kirkness; Cristina Menni; Jonas Zierer; Kerrin S. Small; Massimo Mangino; Helen Messier; Suzanne Brewerton; Yaron Turpaz; Brad A. Perkins; Anne M. Evans; Luke A.D. Miller; Lining Guo; C. Thomas Caskey; Nicholas J. Schork; Chad Garner; Tim D. Spector; J. Craig Venter; Amalio Telenti

Genetic factors modifying the blood metabolome have been investigated through genome-wide association studies (GWAS) of common genetic variants and through exome sequencing. We conducted a whole-genome sequencing study of common, low-frequency and rare variants to associate genetic variations with blood metabolite levels using comprehensive metabolite profiling in 1,960 adults. We focused the analysis on 644 metabolites with consistent levels across three longitudinal data collections. Genetic sequence variations at 101 loci were associated with the levels of 246 (38%) metabolites (P ≤ 1.9 × 10−11). We identified 113 (10.7%) among 1,054 unrelated individuals in the cohort who carried heterozygous rare variants likely influencing the function of 17 genes. Thirteen of the 17 genes are associated with inborn errors of metabolism or other pediatric genetic conditions. This study extends the map of loci influencing the metabolome and highlights the importance of heterozygous rare variants in determining abnormal blood metabolic phenotypes in adults.


Metabolomics | 2014

Metabolite profiling reveals new insights into the regulation of serum urate in humans

Eva Albrecht; Melanie Waldenberger; Jan Krumsiek; Anne M. Evans; Ulli Jeratsch; Michaela Breier; Jerzy Adamski; Wolfgang Koenig; Sonja Zeilinger; Christiane Fuchs; Norman Klopp; Fabian J. Theis; H.-Erich Wichmann; Karsten Suhre; Thomas Illig; Konstantin Strauch; Annette Peters; Christian Gieger; Gabi Kastenmüller; Angela Doering; Christa Meisinger

Serum urate, the final breakdown product of purine metabolism, is causally involved in the pathogenesis of gout, and implicated in cardiovascular disease and type 2 diabetes. Serum urate levels highly differ between men and women; however the underlying biological processes in its regulation are still not completely understood and are assumed to result from a complex interplay between genetic, environmental and lifestyle factors. In order to describe the metabolic vicinity of serum urate, we analyzed 355 metabolites in 1,764 individuals of the population-based KORA F4 study and constructed a metabolite network around serum urate using Gaussian Graphical Modeling in a hypothesis-free approach. We subsequently investigated the effect of sex and urate lowering medication on all 38 metabolites assigned to the network. Within the resulting network three main clusters could be detected around urate, including the well-known pathway of purine metabolism, as well as several dipeptides, a group of essential amino acids, and a group of steroids. Of the 38 assigned metabolites, 25 showed strong differences between sexes. Association with uricostatic medication intake was not only confined to purine metabolism but seen for seven metabolites within the network. Our findings highlight pathways that are important in the regulation of serum urate and suggest that dipeptides, amino acids, and steroid hormones are playing a role in its regulation. The findings might have an impact on the development of specific targets in the treatment and prevention of hyperuricemia.


Journal of Postgenomics: Drug & Biomarker Development | 2012

Categorizing Ion -Features in Liquid Chromatography/Mass Spectrometry Metobolomics Data

Anne M. Evans; Matthew W. Mitchell; Hongping Dai; Corey Donald DeHaven

Mass spectrometry based metabolomics experiments generate copious amounts of signal data which in turn is processed to ultimately convert the signal data into identified metabolites so that biological interpretation and pathway analysis can be performed. The actual number of biochemicals detected in global biochemical profiling studies utilizing liquid chromatography coupled to mass spectrometry (LC/MS) is much lower than the total number of mass spectral ion-features detected, particularly when using positive electrospray ionization (ESI+). Given the conflicting numbers of detected metabolites reported in literature, a detailed analysis of the ion-feature composition is warranted. Ultrahigh pressure liquid chromatography (UHPLC)/Ion-trap MS and fragmentation (MS2) nominal mass data from 10 human plasma samples were analyzed in triplicate. The resulting detected ion-features were analyzed for ion-feature reproducibility, type and source. It was found that nearly 70% of all ion-features detected were non-reproducible, that 22% were from chemicals contributed to the samples due to storage and processing and that only 25% of the reproducible and annotatable ion-features could be determined to be protonated molecular ions. In addition, a previously undocumented ion-feature type; amalgam adducts, and ion-feature source; ions arising from chemistry of compounds occurring within extracted samples is reported. Ultimately, this analysis demonstrated that from an average of 10,000 ion-features detected in a human plasma sample ultimately only 220 compounds of biological origin were detected and identified from a positive ion analysis only.


Archive | 2012

Software Techniques for Enabling High-Throughput Analysis of Metabolomic Datasets

Corey Donald DeHaven; Anne M. Evans; Hongping Dai; Kay A. Lawton

In recent years, the study of metabolomics and the use of metabolomics data to answer a variety of biological questions have been greatly increasing (Fan, Lane et al. 2004; Griffin 2006; Khoo and Al-Rubeai 2007; Lindon, Holmes et al. 2007; Lawton, Berger et al. 2008). While various techniques are available for analyzing this type of data (Bryan, Brennan et al. 2008; Scalbert, Brennan et al. 2009; Thielen, Heinen et al. 2009; Xia, Psychogios et al. 2009), the fundamental goal of the analysis is the same – to quickly and accurately identify detected molecules so that biological mechanisms and modes of action can be understood. Metabolomics analysis was long thought of as, and in many aspects still is, an instrumentation problem; the better and more accurate the instrumentation (LC/MS, GC/MS, NMR, CE, etc.) the better the resulting data which, in turn, facilitates data interpretation and, ultimately, the understanding of the biological relevance of the results.


Psychoneuroendocrinology | 2013

Metabolomic profiles in individuals with negative affectivity and social inhibition: A population-based study of Type D personality

Elisabeth Altmaier; Rebecca T. Emeny; Jan Krumsiek; Maria Elena Lacruz; Karoline Lukaschek; Sibylle Häfner; Gabi Kastenmüller; Werner Römisch-Margl; Cornelia Prehn; Robert P. Mohney; Anne M. Evans; Michael V. Milburn; Thomas Illig; Jerzy Adamski; Fabian J. Theis; Karsten Suhre; Karl-Heinz Ladwig

BACKGROUND Individuals with negative affectivity who are inhibited in social situations are characterized as distressed, or Type D, and have an increased risk of cardiovascular disease (CVD). The underlying biomechanisms that link this psychological affect to a pathological state are not well understood. This study applied a metabolomic approach to explore biochemical pathways that may contribute to the Type D personality. METHODS Type D personality was determined by the Type D Scale-14. Small molecule biochemicals were measured using two complementary mass-spectrometry based metabolomics platforms. Metabolic profiles of Type D and non-Type D participants within a population-based study in Southern Germany were compared in cross-sectional regression analyses. The PHQ-9 and GAD-7 instruments were also used to assess symptoms of depression and anxiety, respectively, within this metabolomic study. RESULTS 668 metabolites were identified in the serum of 1502 participants (age 32-77); 386 of these individuals were classified as Type D. While demographic and biomedical characteristics were equally distributed between the groups, a higher level of depression and anxiety was observed in Type D individuals. Significantly lower levels of the tryptophan metabolite kynurenine were associated with Type D (p-value corrected for multiple testing=0.042), while no significant associations could be found for depression and anxiety. A Gaussian graphical model analysis enabled the identification of four potentially interesting metabolite networks that are enriched in metabolites (androsterone sulfate, tyrosine, indoxyl sulfate or caffeine) that associate nominally with Type D personality. CONCLUSIONS This study identified novel biochemical pathways associated with Type D personality and demonstrates that the application of metabolomic approaches in population studies can reveal mechanisms that may contribute to psychological health and disease.

Collaboration


Dive into the Anne M. Evans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Illig

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge