Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne M. Koning is active.

Publication


Featured researches published by Anne M. Koning.


Antioxidants & Redox Signaling | 2017

The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine

Miriam M. Cortese-Krott; Anne M. Koning; Gunter Georg Kuhnle; Péter Nagy; Christopher L. Bianco; Andreas Pasch; David A. Wink; Jon M. Fukuto; Alan A. Jackson; Harry van Goor; Kenneth R. Olson; Martin Feelisch

Abstract Significance: Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent Advances: Similar to reactive oxygen species and reactive nitrogen species, reactive sulfur species are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism, and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept defined as the reactive species interactome (RSI). The RSI is a primeval multilevel redox regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stressors to enhance fitness and resilience at the local and whole-organism level. Critical Issues: To better characterize the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems, and effects on cellular, organ, and whole-organism bioenergetics using system-level/network analyses. Future Directions: Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other forms of stress will provide new prevention/intervention opportunities for personalized medicine. Antioxid. Redox Signal. 27, 684–712.


Nitric Oxide | 2015

Hydrogen sulfide in renal physiology, disease and transplantation - The smell of renal protection

Anne M. Koning; Anne-Roos S. Frenay; Henri G. D. Leuvenink; Harry van Goor

Hydrogen sulfide (H2S), the third gasotransmitter, next to nitric oxide and carbon monoxide, is a key mediator in physiology and disease. It is involved in homeostatic functions, such as blood pressure control, electrolyte balance and apoptosis, and regulates pathological mechanisms, including oxidative stress and inflammation. Besides, it is believed to serve as an oxygen sensor under ischemic conditions. The kidney plays a decisive role in many of these processes, indicating an interplay between H2S and renal (patho)physiology. In this review we focus on the (protective) functions of H2S in the kidney. We first discuss endogenous renal H2S production and signaling and elaborate on its regulatory functions in renal physiology. Next, we present data on the role of aberrant H2S levels in the onset and progression of renal disease and suggest the use of H2S metabolites as biomarkers. Finally, we describe that exogenous H2S can protect the kidney against various forms of injury and conclude that modulation of renal H2S levels holds promise for renal patients in the future.


Nitric Oxide | 2014

Sodium thiosulfate attenuates angiotensin II-induced hypertension, proteinuria and renal damage.

Pauline M. Snijder; Anne-Roos S. Frenay; Anne M. Koning; Matthias Bachtler; Andreas Pasch; Arjan J. Kwakernaak; Else van den Berg; Eelke M. Bos; Jan-Luuk Hillebrands; Gerjan Navis; Henri G. D. Leuvenink; Harry van Goor

Hypertension and proteinuria are important mediators of renal damage. Despite therapeutic interventions, the number of patients with end stage renal disease steadily increases. Hydrogen sulfide (H(2)S) is an endogenously produced gasotransmitter with vasodilatory, anti-inflammatory and antioxidant properties. These beneficial characteristics make H(2)S an attractive candidate for pharmacological use in hypertensive renal disease. We investigated the protective properties of H(2)S in angiotensin II (Ang II)-induced hypertensive renal disease in rats. Treatment with the H(2)S donor NaHS and major H(2)S metabolite sodium thiosulfate (STS) during three weeks of Ang II infusion reduced hypertension, proteinuria, oxidative stress and renal functional and structural deterioration. In an ex vivo isolated perfused kidney setup, NaHS, but not STS, reduced intrarenal pressure. The effect of NaHS could partially be explained by its activation of the ATP-sensitive potassium channels. In conclusion, treatment with H(2)S attenuates Ang II-associated functional and structural renal deterioration, suggesting that intervention in H(2)S production pathways has potential therapeutic benefit and might be a valuable addition to the already existing antihypertensive and renoprotective therapies.


Pharmacological Research | 2016

Serum free thiols in chronic heart failure

Anne M. Koning; Wouter C. Meijers; Andreas Pasch; Henri G. D. Leuvenink; Anne-Roos S. Frenay; Marinda M. Dekker; Martin Feelisch; Rudolf A. de Boer; Harry van Goor

Oxidative stress is a key element of the pathophysiology of heart failure (HF). As free thiols are readily oxidized by reactive oxygen and sulfur species, their circulating level may directly reflect the systemic redox status. This study addresses the role of serum free thiols in chronic HF, which is of particular interest as free thiols are amenable to therapeutic modulation and thus are a potential target for therapy. Free thiols were measured in serum of 101 previously characterized stable chronic HF patients (93% male, age 63.7±10.0y, left ventricular ejection fraction 34.6±8.2%), adjusted for total serum protein, and subsequently analysed for associations with clinical and outcome parameters. The mean serum free thiol concentration was 3.6±0.5μM/g protein. Patients with above-average levels were younger, had better renal function, lower levels of NT-proBNP and PTH, and higher levels of cholesterol. Furthermore, above-average levels were associated with favourable disease outcome, i.e. a decreased rehospitalisation rate and increased patient survival (HR 0.27 (95% CI 0.11-0.62), P=0.002) independent of associated clinical parameters, age and PTH. After adjustment for cholesterol or established prognostic factors in HF, eGFR and NT-proBNP the association was no longer significant, suggesting involvement of these variables in a common pathophysiological pathway. This exploratory study demonstrates favourable associations of serum free thiols with markers of HF severity and prognosis as well as disease outcome, which should be further investigated in larger prospective studies. Restoring redox status by therapeutic modulation of free thiols may be a promising strategy to improve disease outcome in CHF.


American Journal of Physiology-heart and Circulatory Physiology | 2017

The fate of sulfate in chronic heart failure

Anne M. Koning; Wouter C. Meijers; Isidor Minovic; Adrian Post; Martin Feelisch; Andreas Pasch; Henri G. D. Leuvenink; Rudolf A. de Boer; Stephan J. L. Bakker; Harry van Goor

New leads to advance our understanding of heart failure (HF) pathophysiology are urgently needed. Previous studies have linked urinary sulfate excretion to a favorable cardiovascular risk profile. Sulfate is not only the end product of hydrogen sulfide metabolism but is also directly involved in various (patho)physiological processes, provoking scientific interest in its renal handling. This study investigates sulfate clearance in chronic HF (CHF) patients and healthy individuals and considers its relationship with disease outcome. Parameters related to renal sulfate handling were determined in and compared between 96 previously characterized CHF patients and sex-matched healthy individuals. Among patients, sulfate clearance was analyzed for associations with clinical and outcome parameters. In CHF patients, plasma sulfate concentrations are significantly higher, whereas 24-h urinary excretion, fractional excretion, and clearance of sulfate are significantly lower, compared with healthy individuals. Among patients, sulfate clearance is independently associated with diuretics use, creatinine clearance and 24-h urinary sodium excretion. Sulfate clearance is associated with favorable disease outcome [hazard ratio per SD increase 0.38 (95% confidence interval 0.23-0.63), P < 0.001]. Although significance was lost after adjustment for creatinine clearance, the decrease of sulfate clearance in patients is independent of this parameter, indicating that sulfate clearance is not merely a reflection of renal function. This exploratory study reveals aberrant sulfate clearance as a potential contributor to CHF pathophysiology, with reduced levels in patients and a positive association with favorable disease outcome. Further research is needed to unravel the nature of its involvement and to determine its potential as a biomarker and target for therapy.NEW & NOTEWORTHY Sulfate clearance is decreased in chronic heart failure patients compared with healthy individuals. Among patients, sulfate clearance is positively associated with favorable disease outcome, i.e., a decreased rehospitalization rate and increased patient survival. Hence, decreased sulfate clearance may be involved in the pathophysiology of heart failure.


Antioxidants & Redox Signaling | 2018

Is excretion of sulfur metabolites related to risk of cardiovascular events or mortality in the general population

Joost C. van den Born; Anne-Roos S. Frenay; Anne M. Koning; Matthias Bachtler; Ineke J. Riphagen; Isidor Minovic; Martin Feelisch; Marinda M. Dekker; Marian Bulthuis; Ron T. Gansevoort; Jan-Luuk Hillebrands; Andreas Pasch; Stephan J. L. Bakker; Harry van Goor

Aims: Thiosulfate and sulfate are metabolites of hydrogen sulfide (H2S), a gaseous signaling molecule with cardiovascular (CV) protective properties. Urinary thiosulfate excretion and sulfate excretion are associated with favorable disease outcome in high-risk patient groups. We investigated the relationship between urinary excretion of sulfur metabolites, and risk of CV events and all-cause mortality in the general population. Results: Subjects (n = 6839) of the Prevention of Renal and Vascular End-stage Disease (PREVEND) study were followed prospectively. At baseline, 24-h urinary excretion of thiosulfate and sulfate was determined. Median urinary thiosulfate and sulfate excretion values were 1.27 (interquartile range [IQR] 0.89-2.37) μmol/24 h and 15.7 (IQR 12.0-20.3) mmol/24 h, respectively. Neither thiosulfate nor sulfate excretion showed an independent association with risk of CV events. Sulfate, but not thiosulfate, was inversely associated with risk of all-cause mortality, independent of potential confounders (hazard ratio 0.73 [95% confidence interval 0.63-0.84], p < 0.001). This association appeared most pronounced for normolipidemic subjects (pinteraction = 0.019). Innovation: The strong association between sulfate excretion and mortality in the general population emphasizes the (patho)physiological importance of sulfate or its precursor H2S. Conclusion: We hypothesize that urinary sulfate excretion, which is inversely associated with all-cause mortality in the general population, holds clinical relevance as a beneficial modulator in health and disease. Antioxid. Redox Signal. 30, 1999-2010.


Antioxidants & Redox Signaling | 2018

Urinary Excretion of Sulfur Metabolites and Risk of Cardiovascular Events and All-Cause Mortality in the General Population

Joost C. van den Born; Anne-Roos S. Frenay; Anne M. Koning; Matthias Bachtler; Ineke J. Riphagen; Isidor Minovic; Martin Feelisch; Marinda M. Dekker; Marian Bulthuis; Ron T. Gansevoort; Jan-Luuk Hillebrands; Andreas Pasch; Stephan J. L. Bakker; Harry van Goor

Aims: Thiosulfate and sulfate are metabolites of hydrogen sulfide (H2S), a gaseous signaling molecule with cardiovascular (CV) protective properties. Urinary thiosulfate excretion and sulfate excretion are associated with favorable disease outcome in high-risk patient groups. We investigated the relationship between urinary excretion of sulfur metabolites, and risk of CV events and all-cause mortality in the general population. Results: Subjects (n = 6839) of the Prevention of Renal and Vascular End-stage Disease (PREVEND) study were followed prospectively. At baseline, 24-h urinary excretion of thiosulfate and sulfate was determined. Median urinary thiosulfate and sulfate excretion values were 1.27 (interquartile range [IQR] 0.89-2.37) μmol/24 h and 15.7 (IQR 12.0-20.3) mmol/24 h, respectively. Neither thiosulfate nor sulfate excretion showed an independent association with risk of CV events. Sulfate, but not thiosulfate, was inversely associated with risk of all-cause mortality, independent of potential confounders (hazard ratio 0.73 [95% confidence interval 0.63-0.84], p < 0.001). This association appeared most pronounced for normolipidemic subjects (pinteraction = 0.019). Innovation: The strong association between sulfate excretion and mortality in the general population emphasizes the (patho)physiological importance of sulfate or its precursor H2S. Conclusion: We hypothesize that urinary sulfate excretion, which is inversely associated with all-cause mortality in the general population, holds clinical relevance as a beneficial modulator in health and disease. Antioxid. Redox Signal. 30, 1999-2010.


Expert Review of Molecular Diagnostics | 2017

Selecting heart failure patients for metabolic interventions

Harmen G. Booij; Anne M. Koning; Harry van Goor; Rudolf A. de Boer; B. Daan Westenbrink

ABSTRACT Introduction: Heart failure (HF) has become the cardiovascular epidemic of the century and now imposes an immense burden on health care systems. While our understanding of the pathophysiology of HF has increased dramatically, the translation of knowledge into clinical practice has been disappointing. Metabolic dysfunction in HF has been studied for eight decades, but these efforts have not resulted in effective therapies. This paucity in clinical translation probably results from the variable contribution of metabolic dysfunction to the underlying heart disease. A major unmet need in cardiac drug development is therefore the ability to identify a homogeneous subset of patients in whom HF is driven by a specific mechanism that can be targeted. Areas covered: The available literature was evaluated to describe maladaptive metabolic perturbations that occur in failing hearts and may cause metabolic inflexibility, oxidative stress and cardiac energy depletion. Furthermore, the potential utility of various biomarkers and molecular imaging techniques to detect and quantify specific metabolic dysfunctions in HF were compared. Finally, the authors propose ways to utilize these techniques to select patients for specific metabolic interventions. Expert commentary: Metabolic dysfunction is among the most promising therapeutic targets in HF. Meticulous patient-selection with molecular imaging techniques and specific biomarkers appears indispensable for the effective translation of decades of scientific knowledge into clinical therapeutics.


Supportive Care in Cancer | 2015

Substantial decreases in the number and diversity of microbiota during chemotherapy-induced gastrointestinal mucositis in a rat model

Margot Fijlstra; Mithila Ferdous; Anne M. Koning; Edmond H. H. M. Rings; Hermie J. M. Harmsen; Wim J. E. Tissing


Nitric Oxide | 2014

Hydrogen sulfide attenuates angiotensin II-induced hypertension, proteinuria and renal damage

Anne-Roos S. Frenay; Pauline M. Snijder; Anne M. Koning; Matthias Bachtler; Andreas Pasch; Arjan J. Kwakernaak; Else van den Berg; Eelke M. Bos; Jan-Luuk Hillebrands; Gerjan Navis; Henri G. D. Leuvenink; Harry van Goor

Collaboration


Dive into the Anne M. Koning's collaboration.

Top Co-Authors

Avatar

Harry van Goor

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henri G. D. Leuvenink

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Anne-Roos S. Frenay

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Jan-Luuk Hillebrands

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Stephan J. L. Bakker

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Martin Feelisch

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Else van den Berg

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Isidor Minovic

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge