Anne M. Rowzee
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne M. Rowzee.
Cancer Research | 2010
Ruslan Novosyadlyy; Danielle Lann; Archana Vijayakumar; Anne M. Rowzee; Deborah A. Lazzarino; Yvonne Fierz; Joan M. Carboni; Marco M. Gottardis; Patricia Pennisi; Alfredo A. Molinolo; Naamit Kurshan; Wilson Mejia; Stefania Santopietro; Shoshana Yakar; Teresa L. Wood; Derek LeRoith
Epidemiologic studies suggest that type 2 diabetes (T2D) increases breast cancer risk and mortality, but there is limited experimental evidence supporting this association. Moreover, there has not been any definition of a pathophysiological pathway that diabetes may use to promote tumorigenesis. In the present study, we used the MKR mouse model of T2D to investigate molecular mechanisms that link T2D to breast cancer development and progression. MKR mice harbor a transgene encoding a dominant-negative, kinase-dead human insulin-like growth factor-I receptor (IGF-IR) that is expressed exclusively in skeletal muscle, where it acts to inactivate endogenous insulin receptor (IR) and IGF-IR. Although lean female MKR mice are insulin resistant and glucose intolerant, displaying accelerated mammary gland development and enhanced phosphorylation of IR/IGF-IR and Akt in mammary tissue, in the context of three different mouse models of breast cancer, these metabolic abnormalities were found to accelerate the development of hyperplastic precancerous lesions. Normal or malignant mammary tissue isolated from these mice exhibited increased phosphorylation of IR/IGF-IR and Akt, whereas extracellular signal-regulated kinase 1/2 phosphorylation was largely unaffected. Tumor-promoting effects of T2D in the models were reversed by pharmacological blockade of IR/IGF-IR signaling by the small-molecule tyrosine kinase inhibitor BMS-536924. Our findings offer compelling experimental evidence that T2D accelerates mammary gland development and carcinogenesis,and that the IR and/or the IGF-IR are major mediators of these effects.
The Journal of Infectious Diseases | 2002
Jorge Blanco; Joann Y. Richardson; Miriam E. R. Darnell; Anne M. Rowzee; Lioubov M. Pletneva; David D. Porter; Gregory A. Prince
The induction of pro- and anti-inflammatory cytokines and chemokines was studied in the lungs of cotton rats after primary or secondary infection with respiratory syncytial virus (RSV). Increases in messenger RNA (mRNA) levels of all genes analyzed were observed during the course of primary infection. In general, mRNA expression peaked between postinfection days 1 and 4 and returned to near-normal levels by day 10. During secondary infection, the expression of some genes (i.e., interferon [IFN]-gamma and interleukin [IL]-10) began earlier, some (i.e., IL-1beta and macrophage inflammatory protein-1beta) began later, and some (i.e., IL-1beta, IL-10, growth-regulated protein, and tumor necrosis factor-alpha) showed prolonged expression, whereas 2 genes (i.e., IFN-alpha and IL-6) were not expressed. This study presents evidence of different kinetics of expression of inflammatory mediators during primary and secondary infection that likely coincide with innate and adaptive immune response and complement previous observations that emphasize the role of inflammation in the pathogenesis of RSV disease.
Clinical Cancer Research | 2011
Changyu Zheng; Ana P. Cotrim; Anne M. Rowzee; William D. Swaim; Anastasia L. Sowers; James B. Mitchell; Bruce J. Baum
Purpose: Salivary glands are significantly affected when head and neck cancer patients are treated by radiation. We evaluated the effect of human keratinocyte growth factor (hKGF) gene transfer to murine salivary glands on the prevention of radiation-induced salivary hypofunction. Experimental Design: A hybrid serotype 5 adenoviral vector encoding hKGF (AdLTR2EF1α-hKGF) was constructed. Female C3H mice, 8 weeks old, were irradiated by single (15 Gy) or fractionated (6 Gy for 5 days) doses to induce salivary hypofunction. AdLTR2EF1α-hKGF or AdControl was administered (108 – 1010 particles per gland) to both submandibular glands (SG) by retrograde ductal instillation before irradiation (IR). Salivary flow was measured following pilocarpine stimulation. Human KGF levels were measured by ELISA. SG cell proliferation was measured with bromodeoxyuridine labeling. Endothelial and progenitor or stem cells in SGs were measured by flow cytometry. The effect of SG hKGF production on squamous cell carcinoma (SCC VII) tumor growth was assessed. Results: In 3 separate single-dose IR experiments, salivary flow rates of mice administered the AdLTR2EF1α-hKGF vector were not significantly different from nonirradiated control mice (P > 0.05). Similarly, in 3 separate fractionated IR experiments, the hKGF-expressing vector prevented salivary hypofunction dramatically. Transgenic hKGF protein was found at high levels in serum and SG extracts. AdLTR2EF1α-hKGF–treated mice showed increased cell proliferation and numbers of endothelial cells, compared with mice treated with AdControl. hKGF gene transfer had no effect on SCC VII tumor growth ± radiation. Conclusions: hKGF gene transfer prevents salivary hypofunction caused by either single or fractionated radiation dosing in mice. The findings suggest a potential clinical application. Clin Cancer Res; 17(9); 2842–51. ©2011 AACR.
Endocrinology | 2009
Anne M. Rowzee; Dale L. Ludwig; Teresa L. Wood
The insulin receptor (IR) isoforms and the IGF type 1 receptor (IGF-1R) share a high degree of structural homology but differ in ligand binding kinetics and functions. We developed a highly specific quantitative PCR assay to quantify and compare IR-A, IR-B, and IGF-1R expression within an RNA population. We determined receptor expression in primary murine mammary epithelial cells (MECs) during postnatal development. Both IR isoform mRNAs were 3- to 16-fold higher than IGF-1R expression at all developmental times. IR protein was also 3- to 10-fold higher than IGF-1R protein; however, significantly less IGF-1R was found in hybrid receptors at early (49%) vs. late (79%) pregnancy, indicating that the amount of hybrid receptor is developmentally regulated. Despite high IR expression, IGF ligands were more effective than insulin in stimulating the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt pathway in acutely isolated MECs from virgin glands. Although approximately 40% of IR transcripts were the IGF-II-sensitive IR-A isoform, IGF-II failed to stimulate IR phosphorylation, and an IGF-1R-specific blocking antibody completely abrogated IGF-II-mediated Akt phosphorylation in the virgin MECs. Taken together, these data suggest that the IGF-1R is more active in signaling than the IR and is the predominant mediator of IGF actions in virgin MECs.
Journal of Mammary Gland Biology and Neoplasia | 2004
Malinda A. Stull; Anne M. Rowzee; Aimee V. Loladze; Teresa L. Wood
Growth factors are among the critical positive and negative regulators of cell proliferation for normal mammary/breast epithelial cells and for breast cancer cells. The mechanisms by which specific growth factors regulate the cell cycle in mammary/breast epithelial cells is beginning to be understood for several growth factor families, including the epidermal growth factor, insulin-like growth factor, and transforming growth factor-beta families. A critical issue for understanding how growth factors regulate the cell cycle in vivo is how individual factors interact with other growth factors or hormones to enhance or inhibit specific molecular targets in the cell cycle machinery. This review addresses what is currently known about how growth factors regulate the cell cycle in mammary/breast epithelial cells both individually and in coordination with other growth regulators.
The International Journal of Biochemistry & Cell Biology | 2010
Paola Perez; Anne M. Rowzee; Changyu Zheng; Janik Adriaansen; Bruce J. Baum
Salivary glands are classical exocrine glands whose external secretions result in the production of saliva. However, in addition to the secretion of exocrine proteins, salivary epithelial cells are also capable of secreting proteins internally, into the bloodstream. This brief review examines the potential for using salivary epithelial cells as a target site for in situ gene transfer, with an ultimate goal of producing therapeutic proteins for treating both systemic and upper gastrointestinal tract disorders. The review discusses the protein secretory pathways reported to be present in salivary epithelial cells, the viral gene transfer vectors shown useful for transducing these cells, model transgenic secretory proteins examined, and some clinical conditions that might benefit from such salivary gland gene transfer.
Journal of Mammary Gland Biology and Neoplasia | 2008
Anne M. Rowzee; Deborah A. Lazzarino; Lauren Rota; Zhaoyu Sun; Teresa L. Wood
The insulin-like growth factors, IGF-I and IGF-II, have endocrine as well as autocrine-paracrine actions on tissue growth. Both IGF ligands are expressed within developing mammary tissue throughout postnatal stages with specific sites of expression in the epithelial and stromal compartments. The elucidation of circulating versus local actions and of epithelial versus stromal actions of IGFs in stimulating mammary epithelial development has been the focus of several laboratories. The recent studies addressing IGF ligand function provide support for the hypotheses that (1) the diverse sites of IGF expression may mediate different cellular outcomes, and (2) IGF-I and IGF-II are distinctly regulated and have diverse functions in mammary development. The mechanisms for IGF function likely are mediated, in part, through diverse IGF signaling receptors. The local actions of the IGF ligands and receptors as revealed through recent publications are the focus of this review.
Experimental Diabetes Research | 2011
Anne M. Rowzee; Niamh X. Cawley; John A. Chiorini; Giovanni Di Pasquale
Glucagon-like peptide 1 (GLP-1) is a small peptide component of the prohormone, proglucagon, that is produced in the gut. Exendin-4, a GLP-1 receptor agonist originally isolated from the saliva of H. suspectum or Gila monster, is a peptide that shares sequence and functional homology with GLP-1. Both peptides have been demonstrated to stimulate insulin secretion, inhibit glucagon secretion, promote satiety and slow gastric emptying. As such, GLP-1 and Exendin-4 have become attractive pharmaceutical targets as an adjunctive therapy for individuals with type II diabetes mellitus, with several products currently available clinically. Herein we summarize the cell biology leading to GLP-1 production and secretion from intestinal L-cells and the endocrine functions of this peptide and Exendin-4 in humans. Additionally, gene therapeutic applications of GLP-1 and Exendin-4 are discussed with a focus on recent work using the salivary gland as a gene therapy target organ for the treatment of diabetes mellitus.
Methods of Molecular Biology | 2010
Bruce J. Baum; Janik Adriaansen; Ana P. Cotrim; Corinne M. Goldsmith; Paola Perez; Senrong Qi; Anne M. Rowzee; Changyu Zheng
For many years, our laboratory has been developing gene transfer approaches for salivary gland disorders that currently lack effective therapy. The purpose of this chapter is to describe key methods used in this developmental process. Specifically, we focus on one clinical condition, irradiation-induced salivary hypofunction, and address the choice of transgene and vector to be used, the construction of recombinant viral vectors, how vector delivery is accomplished, and methods for assessing vector function in vitro and in an appropriate animal model.
Endocrinology | 2010
Antonis Voutetakis; Ana P. Cotrim; Anne M. Rowzee; Changyu Zheng; Trushar Rathod; Tulin Yanik; Y. Peng Loh; Bruce J. Baum; Niamh X. Cawley
An adenoviral (Ad) vector that expresses bioactive glucagon-like peptide 1 (GLP-1) was generated, and its effectiveness at modulating glucose homeostasis was evaluated after transduction of murine salivary glands. The construct was engineered with the signal sequence of mouse GH to direct the peptide into the secretory pathway, followed by a furin cleavage site and the GLP-1(7-37) sequence encoding an Ala to Gly substitution at position 8 to achieve resistance to degradation. When expressed in Neuro2A and COS7 cells, an active form of GLP-1 was specifically detected by RIA in the conditioned medium of transduced cells, showed resistance to degradation by dipeptidyl-peptidase IV, and induced the secretion of insulin from NIT1 pancreatic beta-cells in vitro. In vivo studies demonstrated that healthy mice transduced with Ad-GLP-1 in both submandibular glands had serum GLP-1 levels approximately 3 times higher than mice transduced with the control Ad-luciferase vector. In fasted animals, serum glucose levels were similar between Ad-GLP-1 and Ad-luciferase transduced mice in keeping with GLP-1s glucose-dependent action. However, when challenged with glucose, Ad-GLP-1 transduced mice cleared the glucose significantly faster than control mice. In an animal model of diabetes induced by alloxan, progression of hyperglycemia was significantly attenuated in mice given the Ad-GLP-1 vector compared with control mice. These studies demonstrate that the bioactive peptide hormone, GLP-1, normally secreted from endocrine cells in the gut through the regulated secretory pathway, can be engineered for secretion into the circulatory system from exocrine cells of the salivary gland to affect glucose homeostasis.