Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Maass is active.

Publication


Featured researches published by Anne Maass.


Molecular Psychiatry | 2015

Vascular hippocampal plasticity after aerobic exercise in older adults

Anne Maass; Sandra Düzel; Monique Goerke; Andreas Becke; Uwe Sobieray; Katja Neumann; Martin Lövdén; Ulman Lindenberger; Lars Bäckman; Ruediger C. Braun-Dullaeus; Dörte Ahrens; Hans-Jochen Heinze; Notger G. Müller; Emrah Düzel

Aerobic exercise in young adults can induce vascular plasticity in the hippocampus, a critical region for recall and recognition memory. In a mechanistic proof-of-concept intervention over 3 months, we investigated whether healthy older adults (60–77 years) also show such plasticity. Regional cerebral blood flow (rCBF) and volume (rCBV) were measured with gadolinium-based perfusion imaging (3 Tesla magnetic resonance image (MRI)). Hippocampal volumes were assessed by high-resolution 7 Tesla MRI. Fitness improvement correlated with changes in hippocampal perfusion and hippocampal head volume. Perfusion tended to increase in younger, but to decrease in older individuals. The changes in fitness, hippocampal perfusion and volume were positively related to changes in recognition memory and early recall for complex spatial objects. Path analyses indicated that fitness-related changes in complex object recognition were modulated by hippocampal perfusion. These findings indicate a preserved capacity of the aging human hippocampus for functionally relevant vascular plasticity, which decreases with progressing age.


eLife | 2015

Functional subregions of the human entorhinal cortex

Anne Maass; David Berron; Laura A. Libby; Charan Ranganath; Emrah Düzel

The entorhinal cortex (EC) is the primary site of interactions between the neocortex and hippocampus. Studies in rodents and nonhuman primates suggest that EC can be divided into subregions that connect differentially with perirhinal cortex (PRC) vs parahippocampal cortex (PHC) and with hippocampal subfields along the proximo-distal axis. Here, we used high-resolution functional magnetic resonance imaging at 7 Tesla to identify functional subdivisions of the human EC. In two independent datasets, PRC showed preferential intrinsic functional connectivity with anterior-lateral EC and PHC with posterior-medial EC. These EC subregions, in turn, exhibited differential connectivity with proximal and distal subiculum. In contrast, connectivity of PRC and PHC with subiculum followed not only a proximal-distal but also an anterior-posterior gradient. Our data provide the first evidence that the human EC can be divided into functional subdivisions whose functional connectivity closely parallels the known anatomical connectivity patterns of the rodent and nonhuman primate EC. DOI: http://dx.doi.org/10.7554/eLife.06426.001


NeuroImage | 2016

Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults

Anne Maass; Sandra Düzel; Tanja Brigadski; Monique Goerke; Andreas Becke; Uwe Sobieray; Katja Neumann; Martin Lövdén; Ulman Lindenberger; Lars Bäckman; Rüdiger C. Braun-Dullaeus; Dörte Ahrens; Hans-Jochen Heinze; Notger G. Müller; Volkmar Lessmann; Michael Sendtner; Emrah Düzel

Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n=21) or to a control group (indoor progressive-muscle relaxation/stretching, n=19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here.


The Journal of Neuroscience | 2016

Strong Evidence for Pattern Separation in Human Dentate Gyrus.

David Berron; Hartmut Schütze; Anne Maass; Arturo Cardenas-Blanco; Hugo J. Kuijf; Dharshan Kumaran; Emrah Düzel

The hippocampus is proposed to be critical in distinguishing between similar experiences by performing pattern separation computations that create orthogonalized representations for related episodes. Previous neuroimaging studies have provided indirect evidence that the dentate gyrus (DG) and CA3 hippocampal subregions support pattern separation by inferring the nature of underlying representations from the observation of novelty signals. Here, we use ultra-high-resolution fMRI at 7 T and multivariate pattern analysis to provide compelling evidence that the DG subregion specifically sustains representations of similar scenes that are less overlapping than in other hippocampal (e.g., CA3) and medial temporal lobe regions (e.g., entorhinal cortex). Further, we provide evidence that novelty signals within the DG are stimulus specific rather than generic in nature. Our study, in providing a mechanistic link between novelty signals and the underlying representations, constitutes the first demonstration that the human DG performs pattern separation. SIGNIFICANCE STATEMENT A fundamental property of an episodic memory system is the ability to minimize interference between similar episodes. The dentate gyrus (DG) subregion of the hippocampus is widely viewed to realize this function through a computation referred to as pattern separation, which creates distinct nonoverlapping neural codes for individual events. Here, we leveraged 7 T fMRI to test the hypothesis that this region supports pattern separation. Our results demonstrate that the DG supports representations of similar scenes that are less overlapping than those in neighboring subregions. The current study therefore is the first to offer compelling evidence that the human DG supports pattern separation by obtaining critical empirical data at the representational level: the level where this computation is defined.


Nature Communications | 2014

Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding

Anne Maass; Hartmut Schütze; Oliver Speck; Andrew P. Yonelinas; Claus Tempelmann; Hans-Jochen Heinze; David Berron; Arturo Cardenas-Blanco; Kay Henning Brodersen; Klaas E. Stephan; Emrah Düzel

The ability to form long-term memories for novel events depends on information processing within the hippocampus (HC) and entorhinal cortex (EC). The HC–EC circuitry shows a quantitative segregation of anatomical directionality into different neuronal layers. Whereas superficial EC layers mainly project to dentate gyrus (DG), CA3 and apical CA1 layers, HC output is primarily sent from pyramidal CA1 layers and subiculum to deep EC layers. Here we utilize this directionality information by measuring encoding activity within HC/EC subregions with 7u2009T high resolution functional magnetic resonance imaging (fMRI). Multivariate Bayes decoding within HC/EC subregions shows that processing of novel information most strongly engages the input structures (superficial EC and DG/CA2–3), whereas subsequent memory is more dependent on activation of output regions (deep EC and pyramidal CA1). This suggests that while novelty processing is strongly related to HC–EC input pathways, the memory fate of a novel stimulus depends more on HC–EC output.


NeuroImage | 2017

Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer's disease

Anne Maass; Susan M. Landau; Suzanne L. Baker; Andy Horng; Samuel N. Lockhart; Renaud La Joie; Gil D. Rabinovici; William J. Jagust

&NA; The recent development of tau‐specific positron emission tomography (PET) tracers enables in vivo quantification of regional tau pathology, one of the key lesions in Alzheimers disease (AD). Tau PET imaging may become a useful biomarker for clinical diagnosis and tracking of disease progression but there is no consensus yet on how tau PET signal is best quantified. The goal of the current study was to evaluate multiple whole‐brain and region‐specific approaches to detect clinically relevant tau PET signal. Two independent cohorts of cognitively normal adults and amyloid‐positive (A&bgr;+) patients with mild cognitive impairment (MCI) or AD‐dementia underwent [18F]AV‐1451 PET. Methods for tau tracer quantification included: (i) in vivo Braak staging, (ii) regional uptake in Braak composite regions, (iii) several whole‐brain measures of tracer uptake, (iv) regional uptake in AD‐vulnerable voxels, and (v) uptake in a priori defined regions. Receiver operating curves characterized accuracy in distinguishing A&bgr;‐ controls from AD/MCI patients and yielded tau positivity cutoffs. Clinical relevance of tau PET measures was assessed by regressions against cognition and MR imaging measures. Key tracer uptake patterns were identified by a factor analysis and voxel‐wise contrasts. Braak staging, global and region‐specific tau measures yielded similar diagnostic accuracies, which differed between cohorts. While all tau measures were related to amyloid and global cognition, memory and hippocampal/entorhinal volume/thickness were associated with regional tracer retention in the medial temporal lobe. Key regions of tau accumulation included medial temporal and inferior/middle temporal regions, retrosplenial cortex, and banks of the superior temporal sulcus. Our data indicate that whole‐brain tau PET measures might be adequate biomarkers to detect AD‐related tau pathology. However, regional measures covering AD‐vulnerable regions may increase sensitivity to early tau PET signal, atrophy and memory decline. Graphical abstract Figure. No caption available. Highlights10 different tau PET measures were evaluated in 2 independent samples.Global and region‐specific tau measures yielded similar diagnostic accuracies.Correlations to clinical variables were stronger for regional than global measures.Tau deposition showed typical patterns captured by several different approaches.Neocortical tau deposition was greater for early‐ than late‐onset AD cases.


Hippocampus | 2017

A harmonized segmentation protocol for hippocampal and parahippocampal subregions : why do we need one and what are the key goals?

Laura E.M. Wisse; Ana M. Daugherty; Rosanna K. Olsen; David Berron; Valerie A. Carr; Craig E.L. Stark; Robert S.C. Amaral; Katrin Amunts; Jean C. Augustinack; Andrew R. Bender; Jeffrey Bernstein; Marina Boccardi; Martina Bocchetta; Alison C. Burggren; M. Mallar Chakravarty; Marie Chupin; Arne D. Ekstrom; Robin de Flores; Ricardo Insausti; Prabesh Kanel; Olga Kedo; Kristen M. Kennedy; Geoffrey A. Kerchner; Karen F. LaRocque; Xiuwen Liu; Anne Maass; Nicolai Malykhin; Susanne G. Mueller; Noa Ofen; Daniela J. Palombo

The advent of high‐resolution magnetic resonance imaging (MRI) has enabled in vivo research in a variety of populations and diseases on the structure and function of hippocampal subfields and subdivisions of the parahippocampal gyrus. Because of the many extant and highly discrepant segmentation protocols, comparing results across studies is difficult. To overcome this barrier, the Hippocampal Subfields Group was formed as an international collaboration with the aim of developing a harmonized protocol for manual segmentation of hippocampal and parahippocampal subregions on high‐resolution MRI. In this commentary we discuss the goals for this protocol and the associated key challenges involved in its development. These include differences among existing anatomical reference materials, striking the right balance between reliability of measurements and anatomical validity, and the development of a versatile protocol that can be adopted for the study of populations varying in age and health. The commentary outlines these key challenges, as well as the proposed solution of each, with concrete examples from our working plan. Finally, with two examples, we illustrate how the harmonized protocol, once completed, is expected to impact the field by producing measurements that are quantitatively comparable across labs and by facilitating the synthesis of findings across different studies.


NeuroImage: Clinical | 2017

A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI

David Berron; P. Vieweg; A. Hochkeppler; John Pluta; Song-Lin Ding; Anne Maass; A. Luther; Long Xie; Sandhitsu R. Das; David A. Wolk; T. Wolbers; Paul A. Yushkevich; Emrah Düzel; Laura E.M. Wisse

Recent advances in MRI and increasing knowledge on the characterization and anatomical variability of medial temporal lobe (MTL) anatomy have paved the way for more specific subdivisions of the MTL in humans. In addition, recent studies suggest that early changes in many neurodegenerative and neuropsychiatric diseases are better detected in smaller subregions of the MTL rather than with whole structure analyses. Here, we developed a new protocol using 7 Tesla (T) MRI incorporating novel anatomical findings for the manual segmentation of entorhinal cortex (ErC), perirhinal cortex (PrC; divided into area 35 and 36), parahippocampal cortex (PhC), and hippocampus; which includes the subfields subiculum (Sub), CA1, CA2, as well as CA3 and dentate gyrus (DG) which are separated by the endfolial pathway covering most of the long axis of the hippocampus. We provide detailed instructions alongside slice-by-slice segmentations to ease learning for the untrained but also more experienced raters. Twenty-two subjects were scanned (19–32 yrs, mean age = 26 years, 12 females) with a turbo spin echo (TSE) T2-weighted MRI sequence with high-resolution oblique coronal slices oriented orthogonal to the long axis of the hippocampus (in-plane resolution 0.44 × 0.44 mm2) and 1.0 mm slice thickness. The scans were manually delineated by two experienced raters, to assess intra- and inter-rater reliability. The Dice Similarity Index (DSI) was above 0.78 for all regions and the Intraclass Correlation Coefficients (ICC) were between 0.76 to 0.99 both for intra- and inter-rater reliability. In conclusion, this study presents a fine-grained and comprehensive segmentation protocol for MTL structures at 7 T MRI that closely follows recent knowledge from anatomical studies. More specific subdivisions (e.g. area 35 and 36 in PrC, and the separation of DG and CA3) may pave the way for more precise delineations thereby enabling the detection of early volumetric changes in dementia and neuropsychiatric diseases.


The Journal of Neuroscience | 2017

Entorhinal tau pathology, episodic memory decline, and neurodegeneration in aging

Anne Maass; Samuel N. Lockhart; Theresa M. Harrison; Rachel K. Bell; Taylor J. Mellinger; Kaitlin N. Swinnerton; Suzanne L. Baker; Gil D. Rabinovici; William J. Jagust

The medial temporal lobe (MTL) is an early site of tau accumulation and MTL dysfunction may underlie episodic-memory decline in aging and dementia. Postmortem data indicate that tau pathology in the transentorhinal cortex is common by age 60, whereas spread to neocortical regions and worsening of cognition is associated with β-amyloid (Aβ). We used [18F]AV-1451 and [11C]PiB positron emission tomography, structural MRI, and neuropsychological assessment to investigate how in vivo tau accumulation in temporal lobe regions, Aβ, and MTL atrophy contribute to episodic memory in cognitively normal older adults (n = 83; age, 77 ± 6 years; 58% female). Stepwise regressions identified tau in MTL regions known to be affected in old age as the best predictor of episodic-memory performance independent of Aβ status. There was no interactive effect of MTL tau with Aβ on memory. Higher MTL tau was related to higher age in the subjects without evidence of Aβ. Among temporal lobe subregions, episodic memory was most strongly related to tau-tracer uptake in the parahippocampal gyrus, particularly the posterior entorhinal cortex, which in our parcellation includes the transentorhinal cortex. In subjects with longitudinal MRI and cognitive data (n = 57), entorhinal atrophy mirrored patterns of tau pathology and their relationship with memory decline. Our data are consistent with neuropathological studies and further suggest that entorhinal tau pathology underlies memory decline in old age even without Aβ. SIGNIFICANCE STATEMENT Tau tangles and β-amyloid (Aβ) plaques are key lesions in Alzheimers disease (AD) but both pathologies also occur in cognitively normal older people. Neuropathological data indicate that tau tangles in the medial temporal lobe (MTL) underlie episodic-memory impairments in AD dementia. However, it remains unclear whether MTL tau pathology also accounts for memory impairments often seen in elderly people and how Aβ affects this relationship. Using tau-specific and Aβ-specific positron emission tomography tracers, we show that in vivo MTL tau pathology is associated with episodic-memory performance and MTL atrophy in cognitively normal adults, independent of Aβ. Our data point to MTL tau pathology, particularly in the entorhinal cortex, as a substrate of age-related episodic-memory loss.


Neurobiology of Aging | 2018

Age-related functional changes in domain-specific medial temporal lobe pathways

David Berron; Katja Neumann; Anne Maass; Hartmut Schütze; Klaus Fliessbach; Verena Kiven; Frank Jessen; Magdalena Sauvage; Dharshan Kumaran; Emrah Düzel

There is now converging evidence from studies in animals and humans that the medial temporal lobes (MTLs) harbor anatomically distinct processing pathways for object and scene information. Recent functional magnetic resonance imaging studies in humans suggest that this domain-specific organization may be associated with a functional preference of the anterior-lateral part of the entorhinal cortex (alErC) for objects and the posterior-medial entorhinal cortex (pmErC) for scenes. As MTL subregions are differentially affected by aging and neurodegenerative diseases, the question was raised whether aging may affect the 2 pathways differentially. To address this possibility, we developed a paradigm that allows the investigation of object memory and scene memory in a mnemonic discrimination task. A group of young (nxa0= 43) and healthy older subjects (nxa0= 44) underwent functional magnetic resonance imaging recordings during this novel task, while they were asked to discriminate exact repetitions of object and scene stimuli from novel stimuli that were similar but modified versions of the original stimuli (lures). We used structural magnetic resonance images to manually segment anatomical components of the MTL including alErC and pmErC and used these segmented regions to analyze domain specificity of functional activity. Across the entire sample, object processing was associated with activation of the perirhinal cortex (PrC) and alErC, whereas for scene processing, activation was more predominant in the parahippocampal cortex and pmErC. Functional activity related to mnemonic discrimination of object and scene lures from exact repetitions was found to overlap between processing pathways and suggests that while the PrC-alErC pathway was more involved in object discrimination, both pathways were involved in the discrimination of similar scenes. Older adults were behaviorally less accurate than young adults in discriminating similar lures from exact repetitions, but this reduction was equivalent in both domains. However, this was accompanied by significantly reduced domain-specific activity in PrC in older adults compared to what was observed in the young. Furthermore, this reduced domain-specific activity was associated to worse performance in object mnemonic discrimination in older adults. Taken together, we show the fine-grained functional organization of the MTL into domain-specific pathways for objects and scenes and their mnemonic discrimination and further provide evidence that aging might affect these pathways in a differential fashion. Future experiments will elucidate whether the 2 pathways are differentially affected in early stages of Alzheimers disease in relation to amyloid or tau pathology.

Collaboration


Dive into the Anne Maass's collaboration.

Top Co-Authors

Avatar

Suzanne L. Baker

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Emrah Düzel

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Berron

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans-Jochen Heinze

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Katja Neumann

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar

Andreas Becke

Otto-von-Guericke University Magdeburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge