Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne-Marie Carey is active.

Publication


Featured researches published by Anne-Marie Carey.


New Phytologist | 2009

Speciation and distribution of arsenic and localization of nutrients in rice grains

Enzo Lombi; Kirk G. Scheckel; Jan Pallon; Anne-Marie Carey; Yong-Guan Zhu; Andrew A. Meharg

Arsenic (As) contamination of rice grains and the generally low concentration of micronutrients in rice have been recognized as a major concern for human health. Here, we investigated the speciation and localization of As and the distribution of (micro)nutrients in rice grains because these are key factors controlling bioavailability of nutrients and contaminants. Bulk total and speciation analyses using high-pressure liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) and X-ray absorption near-edge spectroscopy (XANES) was complemented by spatially resolved microspectroscopic techniques (micro-XANES, micro-X-ray fluorescence (micro-XRF) and particle induced X-ray emission (PIXE)) to investigate both speciation and distribution of As and localization of nutrients in situ. The distribution of As and micronutrients varied between the various parts of the grains (husk, bran and endosperm) and was characterized by element-specific distribution patterns. The speciation of As in bran and endosperm was dominated by As(III)-thiol complexes. The results indicate that the translocation from the maternal to filial tissues may be a bottleneck for As accumulation in the grain. Strong similarities between the distribution of iron (Fe), manganese (Mn) and phosphorus (P) and between zinc (Zn) and sulphur (S) may be indicative of complexation mechanisms in rice grains.


Plant Physiology | 2010

Grain Unloading of Arsenic Species in Rice

Anne-Marie Carey; Kirk G. Scheckel; Enzo Lombi; Matthew Newville; Yongseong Choi; Gareth J. Norton; John M. Charnock; Joerg Feldmann; Adam H. Price; Andrew A. Meharg

Rice (Oryza sativa) is the staple food for over half the worlds population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a ± stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols.


Environment International | 2009

Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments.

Guo-Xin Sun; Paul N. Williams; Yong-Guan Zhu; Claire Deacon; Anne-Marie Carey; Andrea Raab; Joerg Feldmann; Andrew A. Meharg

Rice has been demonstrated to be one of the major contributors to arsenic (As) in human diets in addition to drinking water, but little is known about rice products as an additional source of As exposure. Rice products were analyzed for total As and a subset of samples were measured for arsenic speciation using high performance liquid chromatography interfaced with inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). A wide range of rice products had total and inorganic arsenic levels that typified those found in rice grain including, crisped rice, puffed rice, rice crackers, rice noodles and a range of Japanese rice condiments as well as rice products targeted at the macrobiotic, vegan, lactose intolerant and gluten intolerance food market. Most As in rice products are inorganic As (75.2-90.1%). This study provides a wider appreciation of how inorganic arsenic derived from rice products enters the human diet.


New Phytologist | 2011

Phloem transport of arsenic species from flag leaf to grain during grain filling

Anne-Marie Carey; Gareth J. Norton; Claire Deacon; Kirk G. Scheckel; Enzo Lombi; Tracy Punshon; Mary Lou Guerinot; Antonio Lanzirotti; Matthew Newville; Yongseong Choi; Adam H. Price; Andrew A. Meharg

• Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated. • Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined. • Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains. • These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.


Journal of Environmental Monitoring | 2008

Inorganic arsenic levels in rice milk exceed EU and US drinking water standards

Andrew A. Meharg; Claire Deacon; Robert C. J. Campbell; Anne-Marie Carey; Paul N. Williams; Joerg Feldmann; Andrea Raab

Under EU legislation, total arsenic levels in drinking water should not exceed 10 microg l(-1), while in the US this figure is set at 10 microg l(-1) inorganic arsenic. All rice milk samples analysed in a supermarket survey (n = 19) would fail the EU limit with up to 3 times this concentration recorded, while out of the subset that had arsenic species determined (n = 15), 80% had inorganic arsenic levels above 10 microg l(-1), with the remaining 3 samples approaching this value. It is a point for discussion whether rice milk is seen as a water substitute or as a food, there are no EU or US food standards highlighting the disparity between water and food regulations in this respect.


Environmental Pollution | 2013

Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species

Gareth J. Norton; Eureka E. Adomako; Claire Deacon; Anne-Marie Carey; Adam H. Price; Andrew A. Meharg

Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic.


Environmental Science & Technology | 2012

Grain Accumulation of Selenium Species in Rice (Oryza sativa L.)

Anne-Marie Carey; Kirk G. Scheckel; Enzo Lombi; Matthew Newville; Yongseong Choi; Gareth J. Norton; Adam H. Price; Andrew A. Meharg

Efficient Se biofortification programs require a thorough understanding of the accumulation and distribution of Se species within the rice grain. Therefore, the translocation of Se species to the filling grain and their spatial unloading were investigated. Se species were supplied via cut flag leaves of intact plants and excised panicle stems subjected to a ± stem-girdling treatment during grain fill. Total Se concentrations in the flag leaves and grain were quantified by inductively coupled plasma mass spectrometry. Spatial accumulation was investigated using synchrotron X-ray fluorescence microtomography. Selenomethionine (SeMet) and selenomethylcysteine (SeMeSeCys) were transported to the grain more efficiently than selenite and selenate. SeMet and SeMeSeCys were translocated exclusively via the phloem, while inorganic Se was transported via both the phloem and xylem. For SeMet- and SeMeSeCys-fed grain, Se dispersed throughout the external grain layers and into the endosperm and, for SeMeSeCys, into the embryo. Selenite was retained at the point of grain entry. These results demonstrate that the organic Se species SeMet and SeMeSeCys are rapidly loaded into the phloem and transported to the grain far more efficiently than inorganic species. Organic Se species are distributed more readily, and extensively, throughout the grain than selenite.


Environmental Science & Technology | 2010

Characterizing Pb mobilization from upland soils to streams using 206Pb/207Pb isotopic ratios.

Julian J. C. Dawson; Doerthe Tetzlaff; Anne-Marie Carey; Andrea Raab; Chris Soulsby; K. Killham; Andrew A. Meharg

Anthropogenically deposited lead (Pb) binds efficiently to soil organic matter, which can be mobilized through hydrologically mediated mechanisms, with implications for ecological and potable quality of receiving waters. Lead isotopic ((206)Pb/(207)Pb) ratios change down peat profiles as a consequence of long-term temporal variation in depositional sources, each with distinctive isotopic signatures. This study characterizes differential Pb transport mechanisms from deposition to streams at two small catchments with contrasting soil types in upland Wales, U.K., by determining Pb concentrations and (206)Pb/(207)Pb ratios from soil core profiles, interstitial pore waters, and stream water. Hydrological characteristics of soils are instrumental in determining the location in soil profiles of exported Pb and hence concentration and (206)Pb/(207)Pb ratios in surface waters. The highest Pb concentrations from near-surface soils are mobilized, concomitant with high dissolved organic carbon (DOC) exports, from hydrologically responsive peat soils with preferential shallow subsurface flows, leading to increased Pb concentrations in stream water and isotopic signatures more closely resembling recently deposited Pb. In more minerogenic soils, percolation of water allows Pb, bound to DOC, to be retained in mineral horizons and combined with other groundwater sources, resulting in Pb being transported from throughout the profile with a more geogenic isotopic signature. This study shows that (206)Pb/(207)Pb ratios can enhance our understanding of the provenances and transport mechanisms of Pb and potentially organic matter within upland soils.


Environmental Science & Technology | 2008

High Percentage Inorganic Arsenic Content of Mining Impacted and Nonimpacted Chinese Rice

Yong-Guan Zhu; Guangyi Sun; Mei Lei; Man Teng; Yiyun Liu; N. C. Chen; Lefan Wang; Anne-Marie Carey; Claire S. Deacon; Andrea Raab; Andrew A. Meharg; Paul N. Williams


Environmental Science & Technology | 2008

Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain.

Guo-Xin Sun; Paul N. Williams; Anne-Marie Carey; Yong-Guan Zhu; Claire Deacon; Andrea Raab; Joerg Feldmann; Rafiqul Islam; Andrew A. Meharg

Collaboration


Dive into the Anne-Marie Carey's collaboration.

Top Co-Authors

Avatar

Andrew A. Meharg

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enzo Lombi

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Raab

University of Aberdeen

View shared research outputs
Top Co-Authors

Avatar

Paul N. Williams

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Kirk G. Scheckel

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Yong-Guan Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge