Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne-Marie Cleton-Jansen is active.

Publication


Featured researches published by Anne-Marie Cleton-Jansen.


Nature Genetics | 2011

Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome

Twinkal C. Pansuriya; Ronald van Eijk; Pio D'Adamo; Maayke A.J.H. van Ruler; Marieke L. Kuijjer; Jan Oosting; Anne-Marie Cleton-Jansen; Jolieke G. van Oosterwijk; Sofie L. J. Verbeke; Danielle Meijer; Tom van Wezel; Karolin Hansén Nord; Luca Sangiorgi; Berkin Toker; Bernadette Liegl-Atzwanger; Mikel San-Julian; Raf Sciot; Nisha Limaye; Lars-Gunnar Kindblom; Soeren Daugaard; Catherine Godfraind; Laurence M. Boon; Miikka Vikkula; Kyle C. Kurek; Karoly Szuhai; Pim J. French; Judith V. M. G. Bovée

Ollier disease and Maffucci syndrome are non-hereditary skeletal disorders characterized by multiple enchondromas (Ollier disease) combined with spindle cell hemangiomas (Maffucci syndrome). We report somatic heterozygous mutations in IDH1 (c.394C>T encoding an R132C substitution and c.395G>A encoding an R132H substitution) or IDH2 (c.516G>C encoding R172S) in 87% of enchondromas (benign cartilage tumors) and in 70% of spindle cell hemangiomas (benign vascular lesions). In total, 35 of 43 (81%) subjects with Ollier disease and 10 of 13 (77%) with Maffucci syndrome carried IDH1 (98%) or IDH2 (2%) mutations in their tumors. Fourteen of 16 subjects had identical mutations in separate lesions. Immunohistochemistry to detect mutant IDH1 R132H protein suggested intraneoplastic and somatic mosaicism. IDH1 mutations in cartilage tumors were associated with hypermethylation and downregulated expression of several genes. Mutations were also found in 40% of solitary central cartilaginous tumors and in four chondrosarcoma cell lines, which will enable functional studies to assess the role of IDH1 and IDH2 mutations in tumor formation.


The Journal of Pathology | 2009

Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2

Alexander B. Mohseny; Karoly Szuhai; Salvatore Romeo; Emilie P. Buddingh; Inge H. Briaire-de Bruijn; Danielle de Jong; Melissa van Pel; Anne-Marie Cleton-Jansen; Pancras C.W. Hogendoorn

High‐grade osteosarcoma is characterized by extensive genetic instability, thereby hampering the identification of causative gene mutations and understanding of the underlying pathological processes. It lacks a benign precursor lesion and reports on associations with hereditary predisposition or germline mutations are uncommon, despite the early age of onset. Here we demonstrate a novel comprehensive approach for the study of premalignant stages of osteosarcoma development in a murine mesenchymal stem cell (MSC) system that formed osteosarcomas upon grafting. By parallel functional and phenotypic analysis of normal MSCs, transformed MSCs and derived osteosarcoma cells, we provide substantial evidence for a MSC origin of osteosarcoma. In a stepwise approach, using COBRA–FISH karyotyping and array CGH in different passages of MSCs, we identified aneuploidization, translocations and homozygous loss of the cdkn2 region as the key mediators of MSC malignant transformation. We then identified CDKN2A/p16 protein expression in 88 osteosarcoma patients as a sensitive prognostic marker, thereby bridging the murine MSCs model to human osteosarcoma. Moreover, occasional reports in patients mention osteosarcoma formation following bone marrow transplantation for an unrelated malignancy. Our findings suggest a possible hazard for the clinical use of MSCs; however, they also offer new opportunities to study early genetic events in osteosarcoma genesis and, more importantly, to modulate these events and record the effect on tumour progression. This could be instrumental for the identification of novel therapeutic strategies, since the success of the current therapies has reached a plateau phase. Copyright


PLOS ONE | 2012

Modulation of the Osteosarcoma Expression Phenotype by MicroRNAs

Heidi M. Namløs; Leonardo A. Meza-Zepeda; Tale Barøy; Ingrid Ostensen; Stine H. Kresse; Marieke L. Kuijjer; Massimo Serra; Horst Bürger; Anne-Marie Cleton-Jansen; Ola Myklebost

Background Osteosarcomas are the most common primary malignant tumors of bone and show multiple and complex genomic aberrations. miRNAs are non-coding RNAs capable of regulating gene expression at the post transcriptional level, and miRNAs and their target genes may represent novel therapeutic targets or biomarkers for osteosarcoma. In order to investigate the involvement of miRNAs in osteosarcoma development, global microarray analyses of a panel of 19 human osteosarcoma cell lines was performed. Principal findings We identified 177 miRNAs that were differentially expressed in osteosarcoma cell lines relative to normal bone. Among these, miR-126/miR-126*, miR-142-3p, miR-150, miR-223, miR-486-5p and members of the miR-1/miR-133a, miR-144/miR-451, miR-195/miR-497 and miR-206/miR-133b clusters were found to be downregulated in osteosarcoma cell lines. All miRNAs in the paralogous clusters miR-17-92, miR-106b-25 and miR-106a-92 were overexpressed. Furthermore, the upregulated miRNAs included miR-9/miR-9*, miR-21*, miR-31/miR-31*, miR-196a/miR-196b, miR-374a and members of the miR-29 and miR-130/301 families. The most interesting inversely correlated miRNA/mRNA pairs in osteosarcoma cell lines included miR-9/TGFBR2 and miR-29/p85α regulatory subunit of PI3K. PTEN mRNA correlated inversely with miR-92a and members of the miR-17 and miR-130/301 families. Expression profiles of selected miRNAs were confirmed in clinical samples. A set of miRNAs, miR-1, miR-18a, miR-18b, miR-19b, miR-31, miR-126, miR-142-3p, miR-133b, miR-144, miR-195, miR-223, miR-451 and miR-497 was identified with an intermediate expression level in osteosarcoma clinical samples compared to osteoblasts and bone, which may reflect the differentiation level of osteosarcoma relative to the undifferentiated osteoblast and fully differentiated normal bone. Significance: This study provides an integrated analysis of miRNA and mRNA in osteosarcoma, and gives new insight into the complex genetic mechanisms of osteosarcoma development and progression.


Clinical Cancer Research | 2011

Tumor-Infiltrating Macrophages Are Associated with Metastasis Suppression in High-Grade Osteosarcoma: A Rationale for Treatment with Macrophage Activating Agents

Emilie P. Buddingh; Marieke L. Kuijjer; Ronald A J Duim; Horst Bürger; Konstantin Agelopoulos; Ola Myklebost; Massimo Serra; Fredrik Mertens; Pancras C.W. Hogendoorn; Arjan C. Lankester; Anne-Marie Cleton-Jansen

Purpose: High-grade osteosarcoma is a malignant primary bone tumor with a peak incidence in adolescence. Overall survival (OS) of patients with resectable metastatic disease is approximately 20%. The exact mechanisms of development of metastases in osteosarcoma remain unclear. Most studies focus on tumor cells, but it is increasingly evident that stroma plays an important role in tumorigenesis and metastasis. We investigated the development of metastasis by studying tumor cells and their stromal context. Experimental Design: To identify gene signatures playing a role in metastasis, we carried out genome-wide gene expression profiling on prechemotherapy biopsies of patients who did (n = 34) and patients who did not (n = 19) develop metastases within 5 years. Immunohistochemistry (IHC) was performed on pretreatment biopsies from 2 additional cohorts (n = 63 and n = 16) and corresponding postchemotherapy resections and metastases. Results: A total of 118/132 differentially expressed genes were upregulated in patients without metastases. Remarkably, almost half of these upregulated genes had immunological functions, particularly related to macrophages. Macrophage-associated genes were expressed by infiltrating cells and not by osteosarcoma cells. Tumor-associated macrophages (TAM) were quantified with IHC and associated with significantly better overall survival (OS) in the additional patient cohorts. Osteosarcoma samples contained both M1- (CD14/HLA-DRα positive) and M2-type TAMs (CD14/CD163 positive and association with angiogenesis). Conclusions: In contrast to most other tumor types, TAMs are associated with reduced metastasis and improved survival in high-grade osteosarcoma. This study provides a biological rationale for the adjuvant treatment of high-grade osteosarcoma patients with macrophage activating agents, such as muramyl tripeptide. Clin Cancer Res; 17(8); 2110–9. ©2011 AACR.


Lancet Oncology | 2005

Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment

Judith V. M. G. Bovée; Anne-Marie Cleton-Jansen; Antonie H. M. Taminiau; Pancras C.W. Hogendoorn

Chondrosarcoma is a malignant cartilage-forming tumour of bone, of which distinct clinicopathological subtypes are known. Conventional chondrosarcoma is notorious for its locally aggressive behaviour as well as for its resistance to chemotherapy and radiotherapy; so far surgery is the only effective therapeutic option. During the past 10 years, substantial new insights have been gained about molecular cell biology, molecular cytogenetics, and immunopathology, leading to better understanding of chondrosarcoma development at the molecular level, which will ultimately lead to better clinical understanding and possibly to the development of targeted treatment.


Genes, Chromosomes and Cancer | 2010

Molecular characterization of commonly used cell lines for bone tumor research: A trans-European EuroBoNet effort

Laura Ottaviano; Karl Ludwig Schaefer; Melanie Gajewski; Wolfgang Huckenbeck; Stefan Baldus; Uwe Rogel; Carlos Mackintosh; Enrique de Alava; Ola Myklebost; Stine H. Kresse; Leonardo A. Meza-Zepeda; Massimo Serra; Anne-Marie Cleton-Jansen; Pancras C.W. Hogendoorn; Horst Buerger; Thomas Aigner; Helmut E. Gabbert; Christopher Poremba

Usage of cancer cell lines has repeatedly generated conflicting results provoked by differences among subclones or contamination with mycoplasm or other immortal mammalian cells. To overcome these limitations, we decided within the EuroBoNeT consortium to characterize a common set of cell lines including osteosarcomas (OS), Ewing sarcomas (ES), and chondrosarcomas (CS). DNA fingerprinting was used to guarantee the identity of all of the cell lines and to distinguish subclones of osteosarcoma cell line HOS. Screening for homozygous loss of 38 tumor suppressor genes by MLPA revealed deletion of CDKN2A as the most common event (15/36), strictly associated with absence of the CDKN2A (p16) protein. Ten cell lines showed missense mutations of the TP53 gene while another set of nine cell lines showed mutations resulting in truncation of the TP53 protein. Cells harboring missense mutations expressed high levels of nuclear TP53, while cell lines with nonsense mutations showed weak/absent staining for TP53. TP53wt cell lines usually expressed the protein in 2–10% of the cells. However, seven TP53wt osteosarcomas were negative for both mRNA and protein expression. Our analyses shed light on the correlation between immunohistochemical and genetic data for CDKN2A and TP53, and confirm the importance of these signaling pathways. The characterization of a substantial number of cell lines represents an important step to supply research groups with proven models for further advanced studies on tumor biology and may help to make results from different laboratories more comparable.


Breast Cancer Research | 2001

E-cadherin and loss of heterozygosity at chromosome 16 in breast carcinogenesis: different genetic pathways in ductal and lobular breast cancer?

Anne-Marie Cleton-Jansen

Loss of heterozygosity at the long arm of chromosome 16 is one of the most frequent genetic events in breast cancer. In the search for tumour suppressor genes that are the target of loss of heterozygosity at 16q, the E-cadherin gene CDH1 was unveiled by the identification of truncating mutations in the retained copy. However, only lobular tumours showed E-cadherin mutations. Whereas investigations are still devoted to finding the target genes in the more frequent ductal breast cancers, other studies suspect the E-cadherin gene to also be the target in this tumour type. The present article discusses the plausibility of those two lines of thought.


British Journal of Cancer | 1995

Loss of heterozygosity in sporadic breast tumours at the BRCA2 locus on chromosome 13q12-q13

Anne-Marie Cleton-Jansen; Nadine Collins; Sunil R. Lakhani; J. Weissenbach; Peter Devilee; Cees J. Cornelisse; Michael R. Stratton

Loss of heterozygosity (LOH) on chromosome 13 occurs on 25-30% of breast tumours. This may reflect the inactivation of the retinoblastoma susceptibility gene RB1. However, recently another candidate tumour-suppressor gene has been identified on chromosome 13 by linkage analysis, the breast cancer susceptibility gene BRCA2. To investigate the involvement of BRCA2 in sporadic breast cancer 200 breast tumours were tested for LOH on chromosome band 13q12-q14, using 11 highly polymorphic microsatellite markers. LOH was found in 65 tumours, which all showed simultaneously loss of BRCA2 and RB1. Of 12 breast tumour cell lines tested with polymorphic microsatellite markers, seven showed a contiguous region of homozygosity on 13q12-q14, suggesting LOH in the tumour from which the cell line had been derived. One cell line showed homozygosity in the BRCA2 region and heterozygosity at RB1. This is the only indication that BRCA2 is a distinct target for LOH on chromosome 13 in addition to RB1.


Laboratory Investigation | 2011

Functional characterization of osteosarcoma cell lines provides representative models to study the human disease

Alexander B. Mohseny; Isidro Machado; Yongping Cai; Karl Ludwig Schaefer; Massimo Serra; Pancras C.W. Hogendoorn; Antonio Llombart-Bosch; Anne-Marie Cleton-Jansen

Cancer cell lines represent in vitro models for studying malignancies, general cell biology, drug discovery and more. Whether they can be considered as exact representative models of the parental tumors remains uncertain given the acquisition of additional ex vivo changes of the cells and the lack of tissue architecture and stroma. Previously, within the EuroBoNeT consortium, we characterized a collection of bone sarcoma cell lines on genomic and proteomic level. Here, we address the phenotypical and functional characterization of the unique set of osteosarcoma cell lines (n=19) in vitro and in vivo. For functional analysis of differentiation capacity, cells were stimulated towards osteoblasts, adipocytes and chondrocytes. Furthermore, all cell lines were injected subcutaneously and intramuscularly into nude mice to assay their in vivo tumor formation capacity as well as for phenotypical analysis of the tumors. All formed tumors were further characterized histologically and immunohistochemically. Out of 19 cell lines, 17 (89%) showed adipogenic differentiation, 13/19 (68%) could differentiate towards osteoblasts and in 6/19 (32%) cell lines chondrogenic differentiation was evident. About half of the cell lines (8/19, 42%) produced tumors in vivo after subcutaneous and intramuscular injections. Several cell lines showed invasion into adjacent tissues and one tumor developed several lung metastases. The use of cell lines, especially in cancer research, is of paramount importance. Here, we identify comprehensively characterized osteosarcoma cell lines, which robustly represent clinical osteosarcoma providing researchers useful in vitro and in vivo models to study the genetics and functional characteristics of this highly malignant neoplasm.


The Journal of Pathology | 1999

Molecular genetic characterization of both components of a dedifferentiated chondrosarcoma, with implications for its histogenesis.

Judith V. M. G. Bovée; Anne-Marie Cleton-Jansen; Carla Rosenberg; Antonie H. M. Taminiau; Cees J. Cornelisse; Pancras C.W. Hogendoorn

Dedifferentiated chondrosarcoma is defined as a high‐grade, anaplastic sarcoma adjacent to a low‐grade malignant cartilage‐forming tumour. Controversy remains as to whether the anaplastic and cartilaginous components are derived from a common precursor cell, or whether they represent separate genotypic lineages (collision tumour). Both components of a case of dedifferentiated chondrosarcoma were therefore separately investigated by loss of heterozygosity (LOH) analysis, comparative genomic hybridization (CGH), DNA flow cytometry, and p53 analysis. Both showed p53 overexpression and an identical somatic 6 bp deletion in exon 7 of p53. Combination of the CGH and LOH results revealed that both components had lost the same copy of chromosome 13. These results provide compelling evidence in this case for a common origin, instead of the ‘collision tumour’ theory. Certain genotypic alterations were not shared. The anaplastic component showed severe aneuploidy, LOH at additional loci, and amplification and deletion of several chromosome parts. In contrast, the cartilaginous component had lost chromosomes 5, 22, 17p and part of 16p and revealed an amplification of 17q. The LOH and CGH results further demonstrated that the two components had lost a different copy of chromosome 4. Thus, a substantial number of genetic alterations have occurred after the diversion of the two components, indicating that the separation of the two clones, derived from a single precursor, was a relatively early event in the histogenesis of this case of dedifferentiated chondrosarcoma. Copyright

Collaboration


Dive into the Anne-Marie Cleton-Jansen's collaboration.

Top Co-Authors

Avatar

Pancras C.W. Hogendoorn

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Cees J. Cornelisse

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Judith V. M. G. Bovée

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peter Devilee

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonie H. M. Taminiau

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge