Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne-Marie Keller is active.

Publication


Featured researches published by Anne-Marie Keller.


Nature | 2006

Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia

Jean-Marc Aury; Olivier Jaillon; Laurent Duret; Benjamin Noel; Claire Jubin; Betina M. Porcel; Béatrice Segurens; Vincent Daubin; Véronique Anthouard; Nathalie Aiach; Olivier Arnaiz; Alain Billaut; Janine Beisson; Isabelle Blanc; Khaled Bouhouche; Francisco Câmara; Sandra Duharcourt; Roderic Guigó; Delphine Gogendeau; Michael Katinka; Anne-Marie Keller; Roland Kissmehl; Catherine Klotz; Anne Le Mouël; Gersende Lepère; Sophie Malinsky; Mariusz Nowacki; Jacek K. Nowak; Helmut Plattner; Julie Poulain

The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive whole-genome duplications. Phylogenetic analysis indicates that the most recent duplication coincides with an explosion of speciation events that gave rise to the P. aurelia complex of 15 sibling species. We observed that gene loss occurs over a long timescale, not as an initial massive event. Genes from the same metabolic pathway or protein complex have common patterns of gene loss, and highly expressed genes are over-retained after all duplications. The conclusion of this analysis is that many genes are maintained after whole-genome duplication not because of functional innovation but because of gene dosage constraints.


Molecular and Cellular Biology | 1998

Homology-Dependent Maternal Inhibition of Developmental Excision of Internal Eliminated Sequences in Paramecium tetraurelia

Sandra Duharcourt; Anne-Marie Keller; Eric Meyer

ABSTRACT Thousands of single-copy internal eliminated sequences (IESs) are excised from the germ line genome of ciliates during development of the polygenomic somatic macronucleus, following sexual events.Paramecium IESs are short, noncoding elements that frequently interrupt coding sequences. No absolutely conserved sequence element, other than flanking 5′-TA-3′ direct repeats, has been identified among sequenced IESs; the mechanisms of their specific recognition and precise elimination are unknown. Previous work has revealed the existence of an epigenetic control of excision. It was shown that the presence of one IES in the vegetative macronucleus results in a specific inhibition of the excision of the same element during the development of a new macronucleus, in the following sexual generation. We have assessed the generality and sequence specificity of this transnuclear maternal control by studying the effects of macronuclear transformation with 13 different IESs. We show that at least five of them can be maintained in the new macronuclear genome; sequence specificity is complete both between genes and between different IESs in the same gene. In all cases, the degree of excision inhibition correlates with the copy number of the maternal IES, but each IES shows a characteristic inhibition efficiency. Short internal IES-like segments were found to be excised from two of the IESs when excision between normal boundaries was inhibited. Available data suggest that the sequence specificity of these maternal effects is mediated by pairing interactions between homologous nucleic acids.


Current Biology | 2000

The SM19 gene, required for duplication of basal bodies in Paramecium, encodes a novel tubulin, η-tubulin

Françoise Ruiz; Anna Krzywicka; Catherine Klotz; Anne-Marie Keller; Jean Cohen; Guillaume Balavoine; Janine Beisson

The discovery of delta-tubulin, the fourth member of the tubulin superfamily, in Chlamydomonas [1] has led to the identification in the genomes of vertebrates and protozoa of putative delta homologues and of additional tubulins, epsilon and zeta [2-4]. These discoveries raise questions concerning the functions of these novel tubulins, their interactions with microtubule arrays and microtubule-organising centres, and their evolutionary status. The sm19-1 mutation of Paramecium specifically inhibits basal body duplication [5] and causes delocalisation of gamma-tubulin, which is also required for basal body duplication [6]. We have cloned the SM19 gene by functional complementation and found that it encodes another new member of the tubulin superfamily. SM19p, provisionally called eta-tubulin (eta-tubulin), shows low sequence identity with the tubulins previously identified in Paramecium, namely, alpha [7], beta [8], gamma [6], delta (this work) and epsilon (P. Dupuis-Williams, personal communication). Phylogenetic analysis indicated that SM19p is not consistently grouped with any phylogenetic entity.


Current Biology | 2004

High Coding Density on the Largest Paramecium tetraurelia Somatic Chromosome

Marek Zagulski; Jacek K. Nowak; Anne Le Mouël; Mariusz Nowacki; Andrzej Migdalski; Robert Gromadka; Benjamin Noel; Isabelle Blanc; Philippe Dessen; Patrick Wincker; Anne-Marie Keller; Jean Cohen; Eric Meyer; Linda Sperling

Paramecium, like other ciliates, remodels its entire germline genome at each sexual generation to produce a somatic genome stripped of transposons and other multicopy elements. The germline chromosomes are fragmented by a DNA elimination process that targets heterochromatin to give a reproducible set of some 200 linear molecules 50 kb to 1 Mb in size. These chromosomes are maintained at a ploidy of 800n in the somatic macronucleus and assure all gene expression. We isolated and sequenced the largest megabase somatic chromosome in order to explore its organization and gene content. The AT-rich (72%) chromosome is compact, with very small introns (average size 25 nt), short intergenic regions (median size 202 nt), and a coding density of at least 74%, higher than that reported for budding yeast (70%) or any other free-living eukaryote. Similarity to known proteins could be detected for 57% of the 460 potential protein coding genes. Thirty-two of the proteins are shared with vertebrates but absent from yeast, consistent with the morphogenetic complexity of Paramecium, a long-standing model for differentiated functions shared with metazoans but often absent from simpler eukaryotes. Extrapolation to the whole genome suggests that Paramecium has at least 30,000 genes.


Journal of Eukaryotic Microbiology | 2000

An indexed genomic library for Paramecium complementation cloning.

Anne-Marie Keller; Jean Cohen

ABSTRACT. Recent pioneering work opened the way for cloning genes in Paramecium by functional complementation of mutants. We present here the construction and pilot utilization of a new indexed library of Paramecium macronuclear DNA. The library is made of 61,440 clones containing inserts mostly between 6 and 12 kilobases. It has already allowed the complementation cloning of four new genes, and this library has proven to be very useful for rapid hybridization cloning.Recent pioneering work opened the way for cloning genes in Paramecium by functional complementation of mutants. We present here the construction and pilot utilization of a new indexed library of Paramecium macronuclear DNA. The library is made of 61,440 clones containing inserts mostly between 6 and 12 kilobases. It has already allowed the complementation cloning of four new genes, and this library has proven to be very useful for rapid hybridization cloning.


Eukaryotic Cell | 2002

Random Sequencing of Paramecium Somatic DNA

Linda Sperling; Philippe Dessen; Marek Zagulski; Ron E. Pearlman; Andrzey Migdalski; Robert Gromadka; Marine Froissard; Anne-Marie Keller; Jean Cohen

ABSTRACT We report a random survey of 1 to 2% of the somatic genome of the free-living ciliate Paramecium tetraurelia by single-run sequencing of the ends of plasmid inserts. As in all ciliates, the germ line genome of Paramecium (100 to 200 Mb) is reproducibly rearranged at each sexual cycle to produce a somatic genome of expressed or potentially expressed genes, stripped of repeated sequences, transposons, and AT-rich unique sequence elements limited to the germ line. We found the somatic genome to be compact (>68% coding, estimated from the sequence of several complete library inserts) and to feature uniformly small introns (18 to 35 nucleotides). This facilitated gene discovery: 722 open reading frames (ORFs) were identified by similarity with known proteins, and 119 novel ORFs were tentatively identified by internal comparison of the data set. We determined the phylogenetic position of Paramecium with respect to eukaryotes whose genomes have been sequenced by the distance matrix neighbor-joining method by using random combined protein data from the project. The unrooted tree obtained is very robust and in excellent agreement with accepted topology, providing strong support for the quality and consistency of the data set. Our study demonstrates that a random survey of the somatic genome of Paramecium is a good strategy for gene discovery in this organism.


Current Genetics | 1984

Ethidium bromide rejuvenation of senescent cultures of Podospora anserina: Loss of senescence-specific DNA and recovery of normal mitochondrial DNA

Odile Begel; Anne-Marie Keller; Corinne Vierny; Léon Belcour

SummaryThe effect of ethidium bromide (EB) which is known to be able to “rejuvenate” senescent mycelia in Podospora anserina, has been investigated at the level of the mitochondrial DNA (mtDNA) by restriction analysis and molecular hybridization. While senescent mycelia display a very low growth ability and gross mtDNA modifications (tandem amplification of short sequences and disorganization of the mitochondrial chromosome: deletion of large sequences), the rejuvenated mycelia display a normal life span and contain a mtDNA in all respects identical to that of wild type mycelium (neither circular molecules nor amplified fragments could be detected). These results demonstrate a strict correlation between the senescent state and the presence of amplified mtDNA and suggest that EB rejuvenation could proceed by an efficient selection of intact mitochondrial chromosomes still present in senescent cultures.


Molecular Microbiology | 2008

KIN241: a gene involved in cell morphogenesis in Paramecium tetraurelia reveals a novel protein family of cyclophilin–RNA interacting proteins (CRIPs) conserved from fission yeast to man

Anna Krzywicka; Janine Beisson; Anne-Marie Keller; Jean Cohen; Maria Jerka-Dziadosz; Catherine Klotz

In this study, we report cloning, by functional complementation of the KIN241 gene involved in Paramecium cell morphogenesis, cortical organization and nuclear reorganization. This gene is predicted to encode a protein of a novel type, comprising a cyclophilin‐type, peptidyl‐prolyl isomerase domain, an RNA recognition motif, followed by a region rich in glutamate and lysine (EK domain) and a C‐terminal string of serines. As homologues of this protein are present in the genomes of Schizosaccharomyces pombe, Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana and Homo sapiens, the Kin241p predicted sequence defines a new family of proteins that we propose to call ‘CRIP’, for cyclophilin–RNA interacting protein. We demonstrate that, in Paramecium, Kin241p is localized in the nucleus and that deletion of some nuclear localization signals (NLSs) decreases transport of the protein into the nucleus. No Kin241‐1 protein is present in mutant cells, suggesting that the C‐terminal serine‐rich region is responsible for protein stability.


Experimental Cell Research | 1986

Immunological evidence of a common structure between Paramecium surface antigens and Trypanosoma variant surface glycoproteins

Yvonne Capceville; Théo Baltz; Christiane Deregnaucourt; Anne-Marie Keller

The surface antigens (SAgs) of Paramecium and the variant surface antigens (VSGs) of Trypanosoma can be purified in two distinct molecular forms: a soluble form (solubilized in dilute ethanolic solution in the case of Paramecium, or in water for Trypanosoma) and a membranal form, amphiphile (solubilized in SDS). In trypanosomes, the enzymatic conversion of the membrane form into the soluble form is accompanied by the unmasking of a particular immunological determinant, called cross-reacting determinant (CRD), which is located in the COOH-terminal phospho-ethanolamine glycopeptide. We demonstrate immunological homologies between Paramecium SAgs and Trypanosoma VSGs. A determinant corresponding to the CRD of VSGs is borne by the ethanol-soluble form of the SAgs and by two cross-reacting light chains also present in ethanolic cellular extracts (together with the soluble form), and not by the membranal form of SAgs. Furthermore, we show that the membranal form of Paramecium SAgs can be converted into soluble form and that this enzymatic conversion also yields cross-reacting light chains. We also demonstrate that the membranal form is the physiological form in paramecia stably expressing a given SAg.


Experimental Cell Research | 1985

Surface antigens of Paramecium primaurelia: Membrane-bound and soluble forms

Yvonne Capdeville; Christiane Deregnaucourt; Anne-Marie Keller

The surface antigens of Paramecium constitute a family of high molecular weight (ca 300 kD) iso-proteins whose alternative expression, adjusted to environmental conditions, involves both intergenic and interallelic exclusion. Since the surface antigen molecules had previously been shown to play a key role in the control of their own expression, it seemed important to compare the structural particularities of different surface antigens: the G and D antigens of P. primaurelia expressed at different temperatures, and which are coded by two unlinked loci. Here we demonstrate that in all cases a given surface antigen presents two biochemically distinct basic forms: a soluble form recovered from ethanolic extraction of whole cells, and a membrane-bound form recovered from ciliary membranes solubilized by detergent. The membrane-bound form differs from the soluble one by its mobility on SDS gels and by an electrophoretic mobility shift in the presence of anionic or cationic detergents. Furthermore, two 40-45 kD polypeptides sharing common determinants with soluble antigens were found exclusively in ethanolic extracts but not in ciliary membranes: the cross-reactivity of these light polypeptides with ethanol-extracted antigens could be demonstrated only after beta-mercaptoethanol treatment. Immunological comparisons between allelic and non-allelic soluble antigens demonstrate that allelic antigens share a great number of surface epitopes, most of which are not accessible in vivo, while non-allelic antigens appear to share essentially sequence-antigenic determinants. The significance of these results is discussed in relation to the mechanism of antigenic variation.

Collaboration


Dive into the Anne-Marie Keller's collaboration.

Top Co-Authors

Avatar

Jean Cohen

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Catherine Klotz

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Corinne Vierny

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Janine Beisson

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Yvonne Capdeville

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Anne Le Mouël

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Christiane Deregnaucourt

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Delphine Gogendeau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Isabelle Blanc

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Marine Froissard

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge