Anne-Marie Lagrange
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne-Marie Lagrange.
Nature | 2002
R. Schödel; T. Ott; R. Genzel; R. Hofmann; Matthew D. Lehnert; A. Eckart; N. Mouawad; T. Alexander; M. J. Reid; Rainer Lenzen; M. Hartung; Francois Lacombe; D. Rouan; E. Gendron; Gerard Rousset; Anne-Marie Lagrange; Wolfgang Brandner; Nancy Ageorges; C. Lidman; Alan F. M. Moorwood; Jason Spyromilio; N. Hubin; K. M. Menten
Many galaxies are thought to have supermassive black holes at their centres—more than a million times the mass of the Sun. Measurements of stellar velocities and the discovery of variable X-ray emission have provided strong evidence in favour of such a black hole at the centre of the Milky Way, but have hitherto been unable to rule out conclusively the presence of alternative concentrations of mass. Here we report ten years of high-resolution astrometric imaging that allows us to trace two-thirds of the orbit of the star currently closest to the compact radio source (and massive black-hole candidate) Sagittarius A*. The observations, which include both pericentre and apocentre passages, show that the star is on a bound, highly elliptical keplerian orbit around Sgr A*, with an orbital period of 15.2 years and a pericentre distance of only 17 light hours. The orbit with the best fit to the observations requires a central point mass of (3.7 ± 1.5) × 106 solar masses (M[circdot]). The data no longer allow for a central mass composed of a dense cluster of dark stellar objects or a ball of massive, degenerate fermions.
Astronomical Telescopes and Instrumentation | 2003
Gerard Rousset; Francois Lacombe; Pascal Puget; Norbert Hubin; Eric Gendron; Thierry Fusco; Robin Arsenault; Julien Charton; Philippe Feautrier; Pierre Gigan; P. Kern; Anne-Marie Lagrange; Pierre-Yves Madec; David Mouillet; Didier Rabaud; Patrick Rabou; Eric Stadler; G. Zins
NAOS is the first adaptive optics system installed at the VLT 8m telescopes. It was designed, manufactured and tested by a french Consortium under an ESO contract, to provide compensated images to the high angular resolution IR spectro-imaging camera (CONICA) in the 1 to 5 μm spectral range. It is equipped with a 185 actuator deformable mirror, a tip/tilt mirror and two wavefront sensors, one in the visible and one in the near IR spectral range. It has been installed in November at the Nasmyth focus B of the VLT UT4. During the first light run in December 2001, NAOS has delivered a Strehl ratio of 50 under average seeing conditions for bright guide stars. The diffraction limit of the telescope has been achieved at 2.2 μm. The closed loop operation has been very robust under bad seeing conditions. It was also possible to obtain a substantial correction with mV=17.6 and mK=13.1 reference stars. The on-sky acceptance tests of NAOS-CONICA were completed in May 2002 and the instrument will be made available to the European astronomical community in October by ESO. This paper describes the system and present the on-sky performance in terms of Strehl ratio, seeing conditions and guide star magnitude.
Monthly Notices of the Royal Astronomical Society | 1997
David Mouillet; John D. Larwood; J. C. B. Papaloizou; Anne-Marie Lagrange
We consider the deformation that has recently been observed in the inner part of the circumstellar disc around f3 Pictoris with the HST. Our recent ground-based, adaptive optics coronographic observations confirm that the inner disc is warped. We investigate the hypothesis that a yet undetected planet is responsible for the observed warp, through simulations of the effect of the gravitational perturbation resulting from a massive companion on the disc. The physical processes assumed in the simulations are discussed: since the observed particles do not survive collisions, the apparent disc shape is driven by the underlying collisionless parent population. The resulting possible parameters for the planet that are consistent with the observed disc deformation are reviewed.
Astronomy and Astrophysics | 2005
G. Chauvin; Anne-Marie Lagrange; Christophe Dumas; Ben Zuckerman; David Mouillet; Inseok Song; J.-L. Beuzit; Patrick James Lowrance
We report new VLT/NACO imaging observations of the young, nearby brown dwarf 2MASSW J1207334-393254 and its suggested planetary mass companion (2M1207 b). Three epochs of VLT/NACO measurements obtained over nearly one year show that the planetary mass companion candidate shares the same proper motion and, with a high confidence level, is not a stationary background object. This result confirms the status of 2M1207 b as of planetary mass (5 times the mass of Jupiter) and the first image of a planetary mass companion in a different system than our own. This discovery offers new perspectives for our understanding of chemical and physical properties of planetary mass objects as well as their mechanisms of formation.
Astronomical Telescopes and Instrumentation | 2003
Rainer Lenzen; Markus Hartung; Wolfgang Brandner; Gert Finger; Norbert Hubin; Francois Lacombe; Anne-Marie Lagrange; Matthew D. Lehnert; Alan F. M. Moorwood; David Mouillet
The Adaptive Optics NIR Instrument NAOS-CONICA has been commissioned at the VLT (UT4) between November 2001 and March 2002. After summarizing the observational capabilities of this multimode instrument in combination with the powerful AO-system, we will present first on sky results of the instrumental performance for several non-direct imaging modes: High spatial resolution slit-spectroscopy in the optical and thermal NIR region has been tested. For compact sources below 2 arcsec extension, Wollaston prism polarimetry is used. For larger objects the linear polarization pattern can be analyzed by wire grids down to the diffraction limit. Coronographic masks are applied to optimize imaging and polarimetric capabilities. The cryogenic Fabry-Perot Interferometer in combination with an 8m-telescope AO-system is shown to be a powerful tool for imaging spectroscopy (3D-scans).
Astronomy and Astrophysics | 2008
G. Hébrard; F. Bouchy; F. Pont; B. Loeillet; M. Rabus; Xavier Bonfils; Claire Moutou; I. Boisse; X. Delfosse; M. Desort; Anne Eggenberger; D. Ehrenreich; T. Forveille; Anne-Marie Lagrange; C. Lovis; Michel Mayor; F. Pepe; C. Perrier; D. Queloz; N. C. Santos; D. Ségransan; S. Udry; A. Vidal-Madjar
The transiting extrasolar planet XO-3b is remarkable, with a high mass and eccentric orbit. These unusual characteristics make it interesting to test whether its orbital plane is parallel to the equator of its host star, as it is observed for other transiting planets. We performed radial velocity measurements of XO-3 with the SOPHIE spectrograph at the 1.93 m telescope of Haute-Provence Observatory during a planetary transit and at other orbital phases. This allowed us to observe the Rossiter-McLaughlin effect and, together with a new analysis of the transit light curve, to refine the parameters of the planet. The unusual shape of the radial velocity anomaly during the transit provides a hint of a nearly transverse Rossiter-McLaughlin effect. The sky-projected angle between the planetary orbital axis and the stellar rotation axis should be λ = 70 ◦ ± 15 ◦ to be compatible with our observations. This suggests that some close-in planets might result from gravitational interaction between planets and/or stars rather than migration due to interaction with the accretion disk. This surprising result requires confirmation by additional observations, especially at lower airmass, to fully exclude the possibility that the signal is due to systematic effects.
Astronomy and Astrophysics | 2007
Morgan Desort; Anne-Marie Lagrange; Franck Galland; S. Udry; Michel Mayor
Aims. It is known that stellar activity may complicate the analysis of high-precision radial-velocity spectroscopic data when looking for exoplanets signatures. We aim at quantifying the impact of stellar spots on stars with various spectral types and rotational velocities and comparing the simulations with data obtained with the HARPS spectrograph. Methods. We have developed detailed simulations of stellar spots and estimated their effects on a number of observables commonly used in the analysis of radial-velocity data when looking for extrasolar planets, such as radial-velocity curves, cross-correlation functions, bisector velocity spans, and photometric curves. Stellar and spot properties are taken into account, as well as the characteristics of the spectrograph used (generally HARPS). The computed stellar spectra are then analyzed in the same way as when searching for exoplanets. Results. 1) A first grid of simulation results (radial-velocity amplitudes, bisector velocity-span amplitudes and shapes, and photometry) is built for F-K type stars, with different stellar and spot properties. 2) It is shown quantitatively that star spots with typical sizes of 1% can mimic both radial-velocity curves and the bisector behavior of short-period giant planets around G-K type stars with a v sini lower than the spectrograph resolution. For stars with intermediate v sini, smaller spots may produce similar features. Such spots may complicate the search for low-mass planets on short-period orbits. In these cases, additional observables (e.g., photometry, spectroscopic diagnostics) are mandatory to confirm the presence of short-period planets. We discuss these possibilities and show that, in some cases, photometric variations may not be enough to clearly rule out spots as explanations of the observed radial-velocity variations. This is particularly important when searching for super-Earth planets. 3) It is also stressed that quantitative values obtained for radial-velocity and bisector velocity-span amplitudes depend strongly on the detailed star properties, on the spectrograph used, on the line or set of lines used, and on the way they are measured. High-resolution spectrographs will help in distinguishing between spots and planets.
Astronomy and Astrophysics | 2009
F. Bouchy; G. Hébrard; S. Udry; X. Delfosse; I. Boisse; M. Desort; X. Bonfils; A. Eggenberger; D. Ehrenreich; Thierry Forveille; Anne-Marie Lagrange; H. Le Coroller; C. Lovis; C. Moutou; F. Pepe; C. Perrier; F. Pont; D. Queloz; N. C. Santos; D. Ségransan; A. Vidal-Madjar
We report on the discovery of a substellar companion or a massive Jupiter orbiting the G5V star HD 16760 using the spectrograph SOPHIE installed on the OHP 1.93-m telescope. Characteristics and performances of the spectrograph are presented, as well as the SOPHIE exoplanet consortium program. With a minimum mass of 14.3 MJup, an orbital period of 465 days and an eccentricity of 0.067, HD 16760b seems to be located just at the end of the mass distribution of giant planets, close to the planet/brown-dwarf transition. Its quite circular orbit supports a formation in a gaseous protoplanetary disk.
Astronomy and Astrophysics | 2009
I. Boisse; Claire Moutou; A. Vidal-Madjar; F. Bouchy; F. Pont; G. Hébrard; X. Bonfils; Bryce Croll; X. Delfosse; Morgan Desort; T. Forveille; Anne-Marie Lagrange; B. Loeillet; C. Lovis; Jaymie M. Matthews; Michel Mayor; F. Pepe; C. Perrier; D. Queloz; Jason F. Rowe; N. C. Santos; D. Ségransan; S. Udry
Aims. Extra-solar planet search programs require high-precision velocity measurements. They need to determine how to differentiate between radial-velocity variations due to Doppler motion and the noise induced by stellar activity. Methods. We monitored the active K2V star HD 189733 and its transiting planetary companion, which has a 2.2-day orbital period. We used the high-resolution spectograph SOPHIE mounted on the 1.93-m telescope at the Observatoire de Haute-Provence to obtain 55 spectra of HD 189733 over nearly two months. We refined the HD 189733b orbit parameters and placed limits on both the eccentricity and long-term velocity gradient. After subtracting the orbital motion of the planet, we compared the variability in spectroscopic activity indices with the evolution in the radial-velocity residuals and the shape of spectral lines. Results. The radial velocity, the spectral-line profile, and the acti vity indices measured in He I (5875.62 A), Hα (6562.81 A), and both of the Ca II H&K lines (3968.47 A and 3933.66 A, respectively) exhibit a periodicity close to the stellar-rotation pe riod and the correlations between them are consistent with a spotted stellar surface in rotation. We used these correlations to corr ect for the radialvelocity jitter due to stellar activity. This results in ach ieving high precision in measuring the orbital parameters, with a semi-amplitude ◦ .
The Astrophysical Journal | 2005
Andrea Stolte; Wolfgang Brandner; Eva K. Grebel; Rainer Lenzen; Anne-Marie Lagrange
We have analyzed high-resolution, adaptive optics HK observations of the Arches cluster obtained with NAOS-CONICA. With a spatial resolution of 84 mas, the cluster center is uniquely resolved. From these data, the present-day mass function (MF) of the Arches cluster is derived down to ~4 M☉. The integrated MF and the core and second-annulus MFs are consistent with a turnover at 6-7 M☉. This turnover indicates severe depletion of intermediate- and low-mass stars in the Arches cluster, possibly caused by its evolution in the Galactic center environment. The Arches MF represents the first resolved observation of a starburst cluster exhibiting a low-mass-truncated MF. This finding has severe implications for stellar population synthesis modeling of extragalactic starbursts, the derivation of integrated properties such as the total mass of star clusters in dense environments, the survival of low-mass remnants from starburst populations, and chemical enrichment during starburst phases.