Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne-Marie Lefebvre is active.

Publication


Featured researches published by Anne-Marie Lefebvre.


Journal of Biological Chemistry | 1997

The organization, promoter analysis, and expression of the human PPARgamma gene

Lluis Fajas; Didier Auboeuf; Eric Raspé; Kristina Schoonjans; Anne-Marie Lefebvre; Régis Saladin; Jamilla Najib; Martine Laville; Jean-Charles Fruchart; Samir S. Deeb; Antonio Vidal-Puig; Jeffrey S. Flier; Michael R. Briggs; Bart Staels; Hubert Vidal; Johan Auwerx

PPARγ is a member of the PPAR subfamily of nuclear receptors. In this work, the structure of the human PPARγ cDNA and gene was determined, and its promoters and tissue-specific expression were functionally characterized. Similar to the mouse, two PPAR isoforms, PPARγ1 and PPARγ2, were detected in man. The relative expression of human PPARγ was studied by a newly developed and sensitive reverse transcriptase-competitive polymerase chain reaction method, which allowed us to distinguish between PPARγ1 and γ2 mRNA. In all tissues analyzed, PPARγ2 was much less abundant than PPARγ1. Adipose tissue and large intestine have the highest levels of PPARγ mRNA; kidney, liver, and small intestine have intermediate levels; whereas PPARγ is barely detectable in muscle. This high level expression of PPARγ in colon warrants further study in view of the well established role of fatty acid and arachidonic acid derivatives in colonic disease. Similarly as mouse PPARγs, the human PPARγs are activated by thiazolidinediones and prostaglandin J and bind with high affinity to a PPRE. The human PPARγ gene has nine exons and extends over more than 100 kilobases of genomic DNA. Alternate transcription start sites and alternate splicing generate the PPARγ1 and PPARγ2 mRNAs, which differ at their 5′-ends. PPARγ1 is encoded by eight exons, and PPARγ2 is encoded by seven exons. The 5′-untranslated sequence of PPARγ1 is comprised of exons A1 and A2, whereas that of PPARγ2 plus the additional PPARγ2-specific N-terminal amino acids are encoded by exon B, located between exons A2 and A1. The remaining six exons, termed 1 to 6, are common to the PPARγ1 and γ2. Knowledge of the gene structure will allow screening for PPARγ mutations in humans with metabolic disorders, whereas knowledge of its expression pattern and factors regulating its expression could be of major importance in understanding its biology.


The EMBO Journal | 1996

PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene.

Kristina Schoonjans; Julia Peinado-Onsurbe; Anne-Marie Lefebvre; Richard A. Heyman; Michael R. Briggs; Samir S. Deeb; Bart Staels; Johan Auwerx

Increased activity of lipoprotein lipase (LPL) may explain the hypotriglyceridemic effects of fibrates, thiazolidinediones and fatty acids, which are known activators (and/or ligands) of the various peroxisome proliferator‐activated receptors (PPARs). Treatment with compounds which activate preferentially PPARalpha, such as fenofibrate, induced LPL expression exclusively in rat liver. In contrast, the antidiabetic thiazolidinedione BRL 49653, a high affinity ligand for PPARgamma, had no effect on liver, but induced LPL expression in rat adipose tissue. In the hepatocyte cell line AML‐12, fenofibric acid, but not BRL 49653, induced LPL mRNA, whereas in 3T3‐L1 preadipocytes, the PPARgamma ligand induced LPL mRNA levels much quicker and to a higher extent than fenofibric acid. In both the in vivo and in vitro studies, inducibility by either PPARalpha or gamma activators, correlated with the tissue distribution of the respective PPARs: an adipocyte‐restricted expression of PPARgamma, whereas PPARalpha was expressed predominantly in liver. A sequence element was identified in the human LPL promoter that mediates the functional responsiveness to fibrates and thiazolidinediones. Methylation interference and gel retardation assays demonstrated that a PPARalpha or gamma and the 9‐cis retinoic acid receptor (RXR) heterodimers bind to this sequence −169 TGCCCTTTCCCCC −157. These data provide evidence that transcriptional activation of the LPL gene by fibrates and thiazolidinediones is mediated by PPAR‐RXR heterodimers and contributes significantly to their hypotriglyceridemic effects in vivo. Whereas thiazolidinediones predominantly affect adipocyte LPL production through activation of PPARgamma, fibrates exert their effects mainly in the liver via activation of PPARalpha.


Nature Medicine | 1998

Activation of the peroxisome proliferator-activated receptor gamma promotes the development of colon tumors in C57BL/6J-APCMin/+ mice.

Anne-Marie Lefebvre; Inhua Chen; Pierre Desreumaux; Jamila Najib; Jean-Charles Fruchart; Karel Geboes; Mike Briggs; Rich Heyman; Johan Auwerx

The development of colorectal cancer, one of the most frequent cancers, is influenced by prostaglandins and fatty acids. Decreased prostaglandin production, seen in mice with mutations in the cyclooxygenase 2 gene or in animals and humans treated with cyclooxygenase inhibitors, prevents or attenuates colon cancer development. There is also a strong correlation between the intake of fatty acids from animal origin and colon cancer. Therefore, the peroxisome proliferator-activated receptor γ (PPARγ; ref. 7), a downstream transcriptional mediator for prostaglandins and fatty acids which is highly expressed in the colon, may be involved in this process. Activation of PPARγ by two different synthetic agonists increased the frequency and size of colon tumors in C57BL/6J-APCMin /+ mice, an animal model susceptible to intestinal neoplasia. Tumor frequency was only increased in the colon, and did not change in the small intestine, coinciding with the colon-restricted expression of PPARγ. Treatment with PPARγ agonists increased β-catenin levels both in the colon of C57BL/6J-APCMin/+ mice and in HT-29 colon carcinoma cells. Genetic abnormalities in the Wnt/wingless/APC pathway, which enhance the transcriptional activity of the β-catenin-T-cell factor/lymphoid enhancer factor 1 transcription complex, often underly the development of colon tumors. Our data indicate that PPARγ activation modifies the development of colon tumors in C57BL/6J-APCMin/+ mice.


Journal of Biological Chemistry | 1997

Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators

Geneviève Martin; Kristina Schoonjans; Anne-Marie Lefebvre; Bart Staels; Johan Auwerx

Intracellular fatty acid (FA) concentrations are in part determined by a regulated import/export system that is controlled by two key proteins, i.e. fatty acid transport protein (FATP) and acyl-CoA synthetase (ACS), which respectively facilitate the transport of FAs across the cell membrane and their esterification to prevent their efflux. The aim of this investigation was to analyze the expression pattern of FATP and ACS and to determine whether their expression was altered by agents that affect FA metabolism through the activation of peroxisome proliferator-activated receptors (PPAR) such as the fibrates and thiazolidinediones. FATP mRNA was ubiquitously expressed, with highest levels being detected in adipose tissue, heart, brain, and testis. Fibrate treatment, which is known to preferentially activate PPARα, induced FATP mRNA levels in rat liver and intestine and induced ACS mRNA levels in liver and kidney. The antidiabetic thiazolidinedione BRL 49653, which is a high-affinity ligand for the adipocyte-specific PPARγ form, caused a small induction of muscle but a robust induction of adipose tissue FATP mRNA levels. BRL 49653 did not affect liver FATP and had a tendency to decrease heart FATP mRNA levels. ACS mRNA levels in general showed a similar pattern after BRL 49653 as FATP except for the muscle where ACS mRNA was induced. This regulation of FATP and ACS expression by PPAR activators was shown to be at the transcriptional level and could also be reproduced in vitro in cell culture systems. In the hepatocyte cell lines AML-12 or Fa 32, fenofibric acid, but not BRL 49653, induced FATP and ACS mRNA levels, whereas in the 3T3-L1 preadipocyte cell line, the PPARγ ligand induced FATP and ACS mRNA levels quicker than fenofibric acid. Inducibility of ACS and FATP mRNA by PPARα or γ activators correlated with the tissue-specific distribution of the respective PPARs and was furthermore associated with a concomitant increase in FA uptake. Most interestingly, thiazolidinedione antidiabetic agents seem to favor adipocyte-specific FA uptake relative to muscle, perhaps underlying in part the beneficial effects of these agents on insulin-mediated glucose disposal.


Journal of Clinical Investigation | 1996

Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma.

P De Vos; Anne-Marie Lefebvre; Stephen G. Miller; Michèle Guerre-Millo; K Wong; Régis Saladin; L G Hamann; Bart Staels; Michael R. Briggs; Johan Auwerx

The ob gene product, leptin, is a signaling factor regulating body weight and energy balance. ob gene expression in rodents is increased in obesity and is regulated by feeding patterns and hormones, such as insulin and glucocorticoids. In humans with gross obesity, ob mRNA levels are higher, but other modulators of human ob expression are unknown. In view of the importance of peroxisome proliferator-activated receptor gamma (PPARgamma) in adipocyte differentiation, we analyzed whether ob gene expression is subject to regulation by factors activating PPARs. Treatment of rats with the PPARalpha activator fenofibrate did not change adipose tissue and body weight and had no significant effect on ob mRNA levels. However, administration of the thiazolidinedione BRL49653, a PPARgamma ligand, increased food intake and adipose tissue weight while reducing ob mRNA levels in rats in a dose-dependent manner. The inhibitory action of the thiazolidinedione BRL49653 on ob mRNA levels was also observed in vitro. Thiazolidinediones reduced the expression of the human ob promoter in primary adipocytes, however, in undifferentiated 3T3-L1 preadipocytes lacking endogenous PPARgamma, cotransfection of PPARgamma was required to observe the decrease. In conclusion, these data suggest that PPARgamma activators reduce ob mRNA levels through an effect of PPARgamma on the ob promoter.


Diabetes | 1998

Depot-specific differences in adipose tissue gene expression in lean and obese subjects

Anne-Marie Lefebvre; M Laville; Nathalie Vega; J. P. Riou; L van Gaal; Johan Auwerx; Hubert Vidal

Intra-abdominal and subcutaneous adipose tissue display important metabolic differences that underlie the association of visceral, but not subcutaneous, fat with obesity-related cardiovascular and metabolic problems. Because the molecular mechanisms contributing to these differences are not yet defined, we compared by reverse transcription-polymerase chain reaction the expression of 15 mRNAs that encode proteins of known importance in adipocyte function in paired omental and subcutaneous abdominal biopsies. No difference in mRNA expression between omental and subcutaneous adipose tissue was observed for hormone sensitive lipase, lipoprotein lipase, 6-phosphofructo-1-kinase, insulin receptor substrate 1, p85α regulatory subunit of phosphatidylinositol-3-kinase, and Rad. Total amount of insulin receptor expression was significantly higher in omental adipose tissue. Most of this increase was accounted for by expression of the differentially spliced insulin receptor lacking exon 11, which is considered to transmit the insulin signal less efficiently than the insulin receptor with exon 11. Perhaps consistent with a less efficient insulin signaling, a twofold reduction in GLUT4, glycogen synthase, and leptin mRNA expression was observed in omental adipose tissue. Finally peroxisome proliferator activated receptor-γ (PPAR-γ) mRNA levels were significantly lower in visceral adipose tissue in subjects with a BMI <30 kg/m2, but not in obese subjects, indicating that relative PPAR-γ expression is increased in omental fat in obesity. This suggests that altered expression of PPAR-γ might play a role in adipose tissue distribution and expansion.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1997

Regulation of Lipoprotein Metabolism by Thiazolidinediones Occurs through a Distinct but Complementary Mechanism Relative to Fibrates

Anne-Marie Lefebvre; Julia Peinado-Onsurbe; Iris Leitersdorf; Michael R. Briggs; James R. Paterniti; Jean-Charles Fruchart; Catherine Fievet; Johan Auwerx; Bart Staels

Thiazolidinediones are antidiabetic agents, which not only improve glucose metabolism but also reduce blood triglyceride concentrations. These compounds are synthetic ligands for PPAR gamma, a transcription factor belonging to the nuclear receptor subfamily of PPARs, which are important transcriptional regulators of lipid and lipoprotein metabolism. The goal of this study was to evaluate the influence of a potent thiazolidinedione, BRL49653, on serum lipoproteins and to determine whether its lipid-lowering effects are mediated by changes in the expression of key genes implicated in lipoprotein metabolism. Treatment of normal rats for 7 days with BRL49653 decreased serum triglycerides in a dose-dependent fashion without affecting serum total and HDL cholesterol and apolipoprotein (apo) A-I and apo A-II concentrations. The decrease in triglyceride concentrations after BRL49653 was mainly due to a reduction of the amount of VLDL particles of unchanged lipid and apo composition. BRL49653 treatment did not change triglyceride production in vivo as analyzed by injection of Triton WR-1339, indicating a primary action on triglyceride catabolism. Analysis of the influence of BRL49653 on the expression of LPL and apo C-III, two key players in triglyceride catabolism, showed a dose-dependent increase in mRNA levels and activity of LPL in epididymal adipose tissue, whereas liver apo C-III mRNA levels remained constant. Furthermore, addition of BRL49653 to primary cultures of differentiated adipocytes increased LPL mRNA levels, indicating a direct action of the drug on the adipocyte. Simultaneous administration of BRL49653 and fenofibrate, a hypolipidemic drug that acts primarily on liver through activation of PPAR alpha both decreased liver apo C-III and increased adipose tissue LPL mRNA levels, resulting in a more pronounced lowering of serum triglycerides than each drug alone. In conclusion, both fibrates and thiazolidinediones exert a hypotriglyceridemic effect. While fibrates act primarily on the liver by decreasing apo C-III production, BRL49653 acts primarily on adipose tissue by increasing lipolysis through the induction of LPL expression. Drugs combining both PPAR alpha and gamma activation potential should therefore display a more efficient hypotriglyceridemic activity than either compound alone and may provide a rationale for improved therapy for elevated triglycerides.


Oncogene | 2003

PPARgamma controls cell proliferation and apoptosis in an RB-dependent manner.

Lluis Fajas; Viviane Egler; Raphael Reiter; Stéphanie Miard; Anne-Marie Lefebvre; Johan Auwerx

The nuclear receptor PPARγ is implicated in the control of cell proliferation and apoptosis. However, the molecular mechanisms by which it controls these processes remain largely elusive. We show here that PPARγ activation in the presence of the retinoblastoma protein (RB) results in the arrest of cells at the G1 phase of the cell cycle, whereas in the absence of RB, cells accumulate in G2/M, endoreduplicate, and undergo apoptosis. Through the use of HDAC inhibitors and coimmunoprecipitations, we furthermore demonstrate that the effects of RB on PPARγ-mediated control of the cell cycle and apoptosis depend on the recruitment of histone deacetylase 3 (HDAC3) to PPARγ. In combination, these data hence demonstrate that the effects of PPARγ on cell proliferation and apoptosis are dependent on the presence of an RB–HDAC3 complex.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1999

Developmental and pharmacological regulation of apolipoprotein C-II gene expression. Comparison with apo C-I and apo C-III gene regulation.

Yvonne Andersson; Zouher Majd; Anne-Marie Lefebvre; Geneviève Martin; Alexander V. Sechkin; V. A. Kosykh; Jean-Charles Fruchart; Jamila Najib; Bart Staels

Increased plasma triglyceride concentrations are often observed in metabolic disorders predisposing to coronary heart disease. Among the major determinants of plasma triglyceride metabolism are the apolipoproteins (apos) of the C class, C-I, C-II, and C-III. Whereas physiological concentrations of apo C-II are required for lipolysis of triglycerides by lipoprotein lipase (LPL), overexpression of all 3 C apolipoproteins leads to hypertriglyceridemia. In the present study, we investigated apo C-II gene regulation under conditions associated with profound changes in plasma triglyceride metabolism, ie, during postnatal development and after treatment with the triglyceride-lowering fibrate drugs, and compared its expression to that of apo C-I and apo C-III. Whereas the expression of both apo C-I and apo C-III is low in fetal liver, increases gradually after birth, and attains maximal levels after weaning, apo C-II gene expression is already detectable in the fetal liver, increases rapidly immediately after birth, and remains elevated throughout suckling. Thus, the increased ingestion of lipids during suckling is met by an earlier induction of apo C-II, the obligatory activator for LPL, compared with apo C-III and apo C-I, which antagonize triglyceride catabolism. Treatment of rats with fibrates decreased apo C-II gene expression in the liver, but not in the intestine, whereas apo C-I gene expression did not change. The decrease of liver apo C-II mRNA levels after fenofibrate occurred in a time- and dose-dependent manner and was reversible but appeared less pronounced than the decrease of apo C-III mRNA. Apo C-II mRNA levels were not affected after treatment with BRL49653, a peroxisome proliferator-activated receptor (PPAR)gamma-specific ligand, suggesting that fibrates act on apo C-II expression via PPARalpha. Addition of fenofibric acid to primary rat and human hepatocytes resulted in a decrease of apo C-II expression. In conclusion, fibrates decrease gene expression of apo C-II and apo C-III, but not apo C-I, in rat and human hepatocytes. This decrease of apo C-II and apo C-III gene expression, together with a lowered apo C-III to apo C-II ratio, should result in an improved clearance of triglyceride-rich remnant lipoproteins from plasma, without hampering triglyceride lipolysis by LPL.


Journal of Investigative Dermatology | 2000

Stimulation of PPARα promotes epidermal keratinocyte differentiation in vivo

László G. Kömüves; Karen Hanley; Anne-Marie Lefebvre; Mao-Qiang Man; Dean C. Ng; Daniel D. Bikle; Mary L. Williams; Peter M. Elias; Johan Auwerx; Kenneth R. Feingold

Collaboration


Dive into the Anne-Marie Lefebvre's collaboration.

Top Co-Authors

Avatar

Johan Auwerx

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Bart Staels

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samir S. Deeb

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge