Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Marie March is active.

Publication


Featured researches published by Anne Marie March.


Nature | 2010

Femtosecond electronic response of atoms to ultra-intense X-rays

L. Young; E. P. Kanter; B. Krässig; Yangmin Li; Anne Marie March; S. T. Pratt; Robin Santra; S. H. Southworth; Nina Rohringer; Louis F. DiMauro; G. Doumy; C. A. Roedig; N. Berrah; L. Fang; M. Hoener; P. H. Bucksbaum; James Cryan; Shambhu Ghimire; James M. Glownia; David A. Reis; John D. Bozek; Christoph Bostedt; M. Messerschmidt

An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 1018 W cm−2, 1.5–0.6 nm, ∼105 X-ray photons per Å2). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse—by sequentially ejecting electrons—to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces ‘hollow’ atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.


Journal of Physical Chemistry A | 2012

Guest–host interactions investigated by time-resolved X-ray spectroscopies and scattering at MHz rates: Solvation dynamics and photoinduced spin transition in aqueous Fe(bipy)3 2+

Kristoffer Haldrup; György Vankó; Wojciech Gawelda; Andreas Galler; Gilles Doumy; Anne Marie March; E. P. Kanter; Amélie Bordage; Asmus Ougaard Dohn; T. B. van Driel; Kasper S. Kjaer; Henrik T. Lemke; Sophie E. Canton; Jens Uhlig; Villy Sundström; Linda Young; Stephen H. Southworth; Martin Meedom Nielsen; Christian Bressler

We have studied the photoinduced low spin (LS) to high spin (HS) conversion of [Fe(bipy)(3)](2+) in aqueous solution. In a laser pump/X-ray probe synchrotron setup permitting simultaneous, time-resolved X-ray diffuse scattering (XDS) and X-ray spectroscopic measurements at a 3.26 MHz repetition rate, we observed the interplay between intramolecular dynamics and the intermolecular caging solvent response with better than 100 ps time resolution. On this time scale, the initial ultrafast spin transition and the associated intramolecular geometric structure changes are long completed, as is the solvent heating due to the initial energy dissipation from the excited HS molecule. Combining information from X-ray emission spectroscopy and scattering, the excitation fraction as well as the temperature and density changes of the solvent can be closely followed on the subnanosecond time scale of the HS lifetime, allowing the detection of an ultrafast change in bulk solvent density. An analysis approach directly utilizing the spectroscopic data in the XDS analysis effectively reduces the number of free parameters, and both combined permit extraction of information about the ultrafast structural dynamics of the caging solvent, in particular, a decrease in the number of water molecules in the first solvation shell is inferred, as predicted by recent theoretical work.


Review of Scientific Instruments | 2011

Development of high-repetition-rate laser pump/x-ray probe methodologies for synchrotron facilities

Anne Marie March; Andrew B. Stickrath; Gilles Doumy; E. P. Kanter; B. Krässig; Stephen H. Southworth; Klaus Attenkofer; Charles Kurtz; Lin X. Chen; Linda Young

We describe our implementation of a high repetition rate (54 kHz-6.5 MHz), high power (>10 W), laser system at the 7ID beamline at the Advanced Photon Source for laser pump/x-ray probe studies of optically driven molecular processes. Laser pulses at 1.06 μm wavelength and variable duration (10 or 130 ps) are synchronized to the storage ring rf signal to a precision of ~250 fs rms. Frequency doubling and tripling of the laser radiation using nonlinear optical techniques have been applied to generate 532 and 355 nm light. We demonstrate that by combining a microfocused x-ray probe with focused optical laser radiation the requisite fluence (with <10 μJ/pulse) for efficient optical excitation can be readily achieved with a compact and commercial laser system at megahertz repetition rates. We present results showing the time-evolution of near-edge x-ray spectra of a well-studied, laser-excited metalloporphyrin, Ni(II)-tetramesitylporphyrin. The use of high repetition rate, short pulse lasers as pump sources will dramatically enhance the duty cycle and efficiency in data acquisition and hence capabilities for laser-pump/x-ray probe studies of ultrafast structural dynamics at synchrotron sources.


Journal of Physical Chemistry C | 2015

Detailed Characterization of a Nanosecond-Lived Excited State: X-ray and Theoretical Investigation of the Quintet State in Photoexcited [Fe(terpy)(2)](2+)

György Vankó; Amélie Bordage; Mátyás Pápai; Kristoffer Haldrup; Pieter Glatzel; Anne Marie March; Gilles Doumy; Alexander Britz; Andreas Galler; Tadesse Assefa; Delphine Cabaret; Amélie Juhin; Tim Brandt van Driel; Kasper Skov Kjær; Asmus Ougaard Dohn; Klaus B. Møller; Henrik T. Lemke; Erik Gallo; Mauro Rovezzi; Zoltán Németh; Emese Rozsályi; Tamás Rozgonyi; Jens Uhlig; Villy Sundström; Martin Meedom Nielsen; Linda Young; Stephen H. Southworth; Christian Bressler; Wojciech Gawelda

Theoretical predictions show that depending on the populations of the Fe 3dxy, 3dxz, and 3dyz orbitals two possible quintet states can exist for the high-spin state of the photoswitchable model system [Fe(terpy)2]2+. The differences in the structure and molecular properties of these 5B2 and 5E quintets are very small and pose a substantial challenge for experiments to resolve them. Yet for a better understanding of the physics of this system, which can lead to the design of novel molecules with enhanced photoswitching performance, it is vital to determine which high-spin state is reached in the transitions that follow the light excitation. The quintet state can be prepared with a short laser pulse and can be studied with cutting-edge time-resolved X-ray techniques. Here we report on the application of an extended set of X-ray spectroscopy and scattering techniques applied to investigate the quintet state of [Fe(terpy)2]2+ 80 ps after light excitation. High-quality X-ray absorption, nonresonant emission, and resonant emission spectra as well as X-ray diffuse scattering data clearly reflect the formation of the high-spin state of the [Fe(terpy)2]2+ molecule; moreover, extended X-ray absorption fine structure spectroscopy resolves the Fe–ligand bond-length variations with unprecedented bond-length accuracy in time-resolved experiments. With ab initio calculations we determine why, in contrast to most related systems, one configurational mode is insufficient for the description of the low-spin (LS)–high-spin (HS) transition. We identify the electronic structure origin of the differences between the two possible quintet modes, and finally, we unambiguously identify the formed quintet state as 5E, in agreement with our theoretical expectations.


Journal of the American Chemical Society | 2016

Tracking the Structural and Electronic Configurations of a Cobalt Proton Reduction Catalyst in Water

Dooshaye Moonshiram; Carolina Gimbert-Suriñach; Alexander A. Guda; Antonio Picón; C. Stefan Lehmann; Xiaoyi Zhang; Gilles Doumy; Anne Marie March; Jordi Benet-Buchholz; A. V. Soldatov; Antoni Llobet; Stephen H. Southworth

X-ray transient absorption spectroscopy (X-TAS) has been used to study the light-induced hydrogen evolution reaction catalyzed by a tetradentate macrocyclic cobalt complex with the formula [LCo(III)Cl2](+) (L = macrocyclic ligand), [Ru(bpy)3](2+) photosensitizer, and an equimolar mixture of sodium ascorbate/ascorbic acid electron donor in pure water. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis of a binary mixture of the octahedral Co(III) precatalyst and [Ru(bpy)3](2+) after illumination revealed in situ formation of a Co(II) intermediate with significantly distorted geometry and electron-transfer kinetics of 51 ns. On the other hand, X-TAS experiments of the complete photocatalytic system in the presence of the electron donor showed the formation of a square planar Co(I) intermediate species within a few nanoseconds, followed by its decay in the microsecond time scale. The Co(I) structural assignment is supported by calculations based on density functional theory (DFT). At longer reaction times, we observe the formation of the initial Co(III) species concomitant to the decay of Co(I), thus closing the catalytic cycle. The experimental X-ray absorption spectra of the molecular species formed along the catalytic cycle are modeled using a combination of molecular orbital DFT calculations (DFT-MO) and finite difference method (FDM). These findings allowed us to assign the full mechanistic pathway, followed by the catalyst as well as to determine the rate-limiting step of the process, which consists in the protonation of the Co(I) species. This study provides a complete kinetics scheme for the hydrogen evolution reaction by a cobalt catalyst, revealing unique information for the development of better catalysts for the reductive side of hydrogen fuel cells.


Nature Communications | 2016

Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics

Antonio Picón; C. S. Lehmann; Christoph Bostedt; Artem Rudenko; Agostino Marinelli; T. Osipov; Daniel Rolles; N. Berrah; C. Bomme; Maximilian Bucher; Gilles Doumy; Benjamin Erk; Ken R. Ferguson; Tais Gorkhover; Phay Ho; E. P. Kanter; B. Krässig; J. Krzywinski; Alberto Lutman; Anne Marie March; Dooshaye Moonshiram; D. Ray; L. Young; Stephen T. Pratt; S. H. Southworth

New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site.


Journal of Physical Chemistry C | 2015

Feasibility of Valence-to-Core X-ray Emission Spectroscopy for Tracking Transient Species

Anne Marie March; Tadesse Assefa; Christian Bressler; Gilles Doumy; Andreas Galler; Wojciech Gawelda; E. P. Kanter; Zoltán Németh; Mátyás Pápai; Stephen H. Southworth; Linda Young; György Vankó

X-ray spectroscopies, when combined in laser-pump, X-ray-probe measurement schemes, can be powerful tools for tracking the electronic and geometric structural changes that occur during the course of a photoinitiated chemical reaction. X-ray absorption spectroscopy (XAS) is considered an established technique for such measurements, and X-ray emission spectroscopy (XES) of the strongest core-to-core emission lines (Kα and Kβ) is now being utilized. Flux demanding valence-to-core XES promises to be an important addition to the time-resolved spectroscopic toolkit. In this paper we present measurements and density functional theory calculations on laser-excited, solution-phase ferrocyanide that demonstrate the feasibility of valence-to-core XES for time-resolved experiments. We discuss technical improvements that will make valence-to-core XES a practical pump–probe technique.


Journal of Modern Optics | 2007

Strong field physics with long wavelength lasers

K. D. Schultz; C. I. Blaga; R. Chirla; P. Colosimo; J. Cryan; Anne Marie March; C. Roedig; Emily Sistrunk; Jennifer Tate; J. Wheeler; Pierre Agostini; L. F. DiMauro

The generation of short, intense, mid-infrared laser pulses allows for the exploration of atom–laser interactions deep in the tunnelling regime as well as providing the ability to explore scaled interactions. In this paper we present recent experimental and theoretical results for this largely unexplored parameter space.


Journal of Physics B | 2012

Molecular frame Auger electron energy spectrum from N2

James Cryan; J. M. Glownia; Jakob Andreasson; A. Belkacem; N. Berrah; Christoph Bostedt; John D. Bozek; N.A. Cherepkov; L. F. DiMauro; L. Fang; Oliver Gessner; Markus Gühr; Janos Hajdu; Marcus P. Hertlein; M. Hoener; Oleg Kornilov; J. P. Marangos; Anne Marie March; Brian K. McFarland; H. Merdji; Marc Messerschmidt; Vladimir Petrovic; C. Raman; D. Ray; David A. Reis; S K Semenov; M. Trigo; J. L. White; William E. White; L. Young

Here we present the first angle-resolved, non-resonant (normal) Auger spectra for impulsively aligned nitrogen molecules. We have measured the angular pattern of Auger electron emission following K-shell photoionization by 1.1 keV photons from the Linac Coherent Light Source (LCLS). Using strong-field-induced molecular alignment to make molecular frame measurements is equally effective for both repulsive and quasi-bound final states. The capability to resolve Auger emission angular distributions in the molecular frame of reference provides a new tool for spectral assignments in congested Auger electron spectra that takes advantage of the symmetries of the final diction states. Based on our experimental results and theoretical predictions, we propose the assignment of the spectral features in the Auger electron spectrum.


IEEE Journal of Selected Topics in Quantum Electronics | 2012

Scaling of High-Order Harmonic Generation in the Long Wavelength Limit of a Strong Laser Field

Anthony DiChiara; Shambhu Ghimire; Emily Sistrunk; Erik Power; Anne Marie March; Terry A. Miller; David A. Reis; Pierre Agostini; Louis F. DiMauro

The development of intense, ultrashort, table-top lasers operating in the mid-infrared spectral region, offers many new avenues for strong-field physics. Atoms submitted to such radiation allow photoelectrons to acquire huge quiver energies well over an order of magnitude larger than the binding energy of the neutral. Consequently, many interesting phenomena arise. First, wavelength offers a convenient experimental knob to tune the ionization regime by controlling the Keldysh parameter. Second, high harmonic generation depends directly on the quiver energy and can, therefore, be pushed to unprecedented limits. Third, wavelength controls the spectral phase of harmonics, and hence the possibility to improve the generation of pulses in the attosecond regime. The use of long wavelength lasers is critical to studying high-order harmonic generation in condensed phase systems, because they facilitate harmonic generation within the transmission window of the material and increase the damage threshold. We review some of the recent discoveries in long wavelength driven high-order harmonic generation in the case of isolated atoms, bulk crystals, and liquid.

Collaboration


Dive into the Anne Marie March's collaboration.

Top Co-Authors

Avatar

Gilles Doumy

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda Young

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. P. Kanter

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Berrah

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Christoph Bostedt

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge