Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Marie Minihane is active.

Publication


Featured researches published by Anne Marie Minihane.


British Journal of Nutrition | 2008

Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research

Jeremy P. E. Spencer; Manal M Abd El Mohsen; Anne Marie Minihane; John C. Mathers

In order to establish firm evidence for the health effects of dietary polyphenol consumption, it is essential to have quantitative information regarding their dietary intake. The usefulness of the current methods, which rely mainly on the assessment of polyphenol intake using food records and food composition tables, is limited as they fail to assess total intake accurately. This review highlights the problems associated with such methods with regard to polyphenol-intake predictions. We suggest that the development of biological biomarkers, measured in both blood and urine, are essential for making accurate estimates of polyphenol intake. However, the relationship between dietary intakes and nutritional biomarkers are often highly complex. This review identifies the criteria that must be considered in the development of such biomarkers. In addition, we provide an assessment of the limited number of potential biomarkers of polyphenol intake currently available.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2000

ApoE Polymorphism and Fish Oil Supplementation in Subjects With an Atherogenic Lipoprotein Phenotype

Anne Marie Minihane; Syrah Khan; Elizabeth C. Leigh-Firbank; Philippa J. Talmud; J. Wright; M. C. Murphy; Bruce A. Griffin; Christine M. Williams

The study assessed the efficacy of fish oil supplementation in counteracting the classic dyslipidemia of the atherogenic lipoprotein phenotype (ALP). In addition, the impact of the common apolipoprotein E (apoE) polymorphism on the fasting and postprandial lipid profile and on responsiveness to the dietary intervention was established. Fifty-five ALP males (aged 34 to 69 years, body mass index 22 to 35 kg/m(2), triglyceride [TG] levels 1.5 to 4.0 mmol/L, high density lipoprotein cholesterol [HDL-C] <1.1 mmol/l, and percent low density lipoprotein [LDL]-3 >40% total LDL) completed a randomized placebo-controlled crossover trial of fish oil (3.0 g eicosapentaenoic acid/docosahexaenoic acid per day) and placebo (olive oil) capsules with the 6-week treatment arms separated by a 12-week washout period. In addition to fasting blood samples, at the end of each intervention arm, a postprandial assessment of lipid metabolism was carried out. Fish oil supplementation resulted in a reduction in fasting TG level of 35% (P<0.001), in postprandial TG response of 26% (TG area under the curve, P<0.001), and in percent LDL-3 of 26% (P<0.05). However, no change in HDL-C levels was evident (P=0.752). ANCOVA showed that baseline HDL-C levels were significantly lower in apoE4 carriers (P=0.035). The apoE genotype also had a striking impact on lipid responses to fish oil intervention. Individuals with an apoE2 allele displayed a marked reduction in postprandial incremental TG response (TG incremental area under the curve, P=0.023) and a trend toward an increase in lipoprotein lipase activity relative to non-E2 carriers. In apoE4 individuals, a significant increase in total cholesterol and a trend toward a reduction in HDL-C relative to the common homozygous E3/E3 profile was evident. Our data demonstrate the efficacy of fish oil fatty acids in counteracting the proatherogenic lipid profile of the ALP but also that the apoE genotype influences responsiveness to this dietary treatment.


British Journal of Nutrition | 2003

Effect of altered dietary n-3 fatty acid intake upon plasma lipid fatty acid composition, conversion of [C]α-linolenic acid to longer-chain fatty acids and partitioning towards β-oxidation in older men

Graham C. Burdge; Yvonne E. Finnegan; Anne Marie Minihane; Christine M. Williams; Stephen A. Wootton

The effect of increased dietary intakes of alpha-linolenic acid (ALNA) or eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for 2 months upon plasma lipid composition and capacity for conversion of ALNA to longer-chain metabolites was investigated in healthy men (52 (SD 12) years). After a 4-week baseline period when the subjects substituted a control spread, a test meal containing [U-(13)C]ALNA (700 mg) was consumed to measure conversion to EPA, docosapentaenoic acid (DPA) and DHA over 48 h. Subjects were then randomised to one of three groups for 8 weeks before repeating the tracer study: (1) continued on same intake (control, n 5); (2) increased ALNA intake (10 g/d, n 4); (3) increased EPA+DHA intake (1.5 g/d, n 5). At baseline, apparent fractional conversion of labelled ALNA was: EPA 2.80, DPA 1.20 and DHA 0.04 %. After 8 weeks on the control diet, plasma lipid composition and [(13)C]ALNA conversion remained unchanged compared with baseline. The high-ALNA diet resulted in raised plasma triacylglycerol-EPA and -DPA concentrations and phosphatidylcholine-EPA concentration, whilst [(13)C]ALNA conversion was similar to baseline. The high-(EPA+DHA) diet raised plasma phosphatidylcholine-EPA and -DHA concentrations, decreased [(13)C]ALNA conversion to EPA (2-fold) and DPA (4-fold), whilst [(13)C]ALNA conversion to DHA was unchanged. The dietary interventions did not alter partitioning of ALNA towards beta-oxidation. The present results indicate ALNA conversion was down-regulated by increased product (EPA+DHA) availability, but was not up-regulated by increased substrate (ALNA) consumption. This suggests regulation of ALNA conversion may limit the influence of variations in dietary n-3 fatty acid intake on plasma lipid compositions.


Journal of Nutritional Biochemistry | 2002

Effects of an antioxidant-rich juice (sea buckthorn) on risk factors for coronary heart disease in humans.

Clair Eccleston; Yang Baoru; Raija Tahvonen; Heikki Kallio; Gerald Rimbach; Anne Marie Minihane

There is increasing evidence to support the hypothesis that free radical-mediated oxidative processes contribute to atherogenesis. More recently the ability of antioxidant nutrients to affect cell response and gene expression has been reported in vitro, providing a novel mechanistic perspective for the biological activity of antioxidants. Sea buckthorn (Hippophaë rhamnoides L.) is a rich source of antioxidants both aqueous and lipophilic, as well as polyunsaturated fatty acids. The objective of the study was to characterize the antioxidant profile of Sea buckthorn juice (SBJ) and to evaluate its effect on plasma lipids, LDL oxidation, platelet aggregation and plasma soluble cell adhesion protein concentration. Twenty healthy male volunteers were given either a placebo or SBJ for 8 weeks. Additional daily intakes of vitamin C, alpha-tocopherol, beta-carotene and flavonoids through SBJ supplementation were 462, 3.2, 1.0 and 355 mg respectively. There were no significant changes in plasma total cholesterol, LDL-C, platelet aggregation or plasma intercellular cell adhesion molecule 1 (ICAM-1) levels between treatment groups. Although not significant, a 20% and 17% increase in plasma HDL-C and triacylglycerol (TAG) concentrations were observed. SBJ supplementation also resulted in a moderate decrease in the susceptibility of LDL to oxidation.


Proceedings of the Nutrition Society | 2002

Regulation of cell signalling by vitamin E.

Gerald Rimbach; Anne Marie Minihane; Jonathan Majewicz; Alexandra Fischer; J. Pallauf; Fabio Virgli; Peter D. Weinberg

Vitamin E, the most important lipid-soluble antioxidant, was discovered at the University of California at Berkeley in 1922. Since its discovery, studies of the constituent tocopherols and tocotrienols have focused mainly on their antioxidant properties. In 1991 Angelo Azzis group (Boscoboinik et al. 1991a,b) first described non-antioxidant cell signalling functions for alpha-tocopherol, demonstrating that vitamin E regulates protein kinase C activity in smooth muscle cells. At the transcriptional level, alpha-tocopherol modulates the expression of the hepatic alpha-tocopherol transfer protein, as well as the expression of liver collagen alphal gene, collagenase gene and alpha-tropomyosin gene. Recently, a tocopherol-dependent transcription factor (tocopherol-associated protein) has been discovered. In cultured cells it has been demonstrated that vitamin E inhibits inflammation, cell adhesion, platelet aggregation and smooth muscle cell proliferation. Recent advances in molecular biology and genomic techniques have led to the discovery of novel vitamin E-sensitive genes and signal transduction pathways.


The American Journal of Clinical Nutrition | 2013

DHA supplementation improved both memory and reaction time in healthy young adults: a randomized controlled trial

Welma Stonehouse; Cathryn A. Conlon; John Podd; Stephen Hill; Anne Marie Minihane; Crystal F. Haskell; David O. Kennedy

BACKGROUND Docosahexaenoic acid (DHA) is important for brain function, and its status is dependent on dietary intakes. Therefore, individuals who consume diets low in omega-3 (n-3) polyunsaturated fatty acids may cognitively benefit from DHA supplementation. Sex and apolipoprotein E genotype (APOE) affect cognition and may modulate the response to DHA supplementation. OBJECTIVES We investigated whether a DHA supplement improves cognitive performance in healthy young adults and whether sex and APOE modulate the response. DESIGN Healthy adults (n = 176; age range: 18-45 y; nonsmoking and with a low intake of DHA) completed a 6-mo randomized, placebo-controlled, double-blind intervention in which they consumed 1.16 g DHA/d or a placebo. Cognitive performance was assessed by using a computerized cognitive test battery. For all tests, z scores were calculated and clustered into cognitive domains as follows: episodic and working memory, attention, reaction time (RT) of episodic and working memory, and attention and processing speed. ANCOVA was conducted with sex and APOE as independent variables. RESULTS RTs of episodic and working memory improved with DHA compared with placebo [mean difference (95% CI): -0.18 SD (-0.33, -0.03 SD) (P = 0.02) and -0.36 SD (-0.58, -0.14 SD) (P = 0.002), respectively]. Sex × treatment interactions occurred for episodic memory (P = 0.006) and the RT of working memory (P = 0.03). Compared with the placebo, DHA improved episodic memory in women [0.28 SD (0.08, 0.48 SD); P = 0.006] and RTs of working memory in men [-0.60 SD (-0.95, -0.25 SD); P = 0.001]. APOE did not affect cognitive function, but there were some indications of APOE × sex × treatment interactions. CONCLUSIONS DHA supplementation improved memory and the RT of memory in healthy, young adults whose habitual diets were low in DHA. The response was modulated by sex. This trial was registered at the New Zealand Clinical Trials Registry (http://www.anzctr.org.au/default.aspx) as ACTRN12610000212055.


Journal of Nutritional Biochemistry | 2009

Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma

Maria Garcia-Alonso; Anne Marie Minihane; Gerald Rimbach; Julián C. Rivas-Gonzalo; Sonia de Pascual-Teresa

Epidemiological studies suggest that a moderate consumption of anthocyanins may be associated with protection against coronary heart disease. The main dietary sources of anthocyanins include red-coloured fruits and red wine. Although dietary anthocyanins comprise a diverse mixture of molecules, little is known how structural diversity relates to their bioavailability and biological function. The aim of the present study was to evaluate the absorption and metabolism of the 3-monoglucosides of delphinidin, cyanidin, petunidin, peonidin and malvidin in humans and to examine both the effect of consuming a red wine extract on plasma antioxidant status and on monocyte chemoattractant protein 1 production in healthy human subjects. After a 12-h overnight fast, seven healthy volunteers received 12 g of an anthocyanin extract and provided 13 blood samples in the 24 h following the test meal. Furthermore, urine was collected during this 24-h period. Anthocyanins were detected in their intact form in both plasma and urine samples. Other anthocyanin metabolites could also be detected in plasma and urine and were identified as glucuronides of peonidin and malvidin. Anthocyanins and their metabolites appeared in plasma about 30 min after ingestion of the test meal and reached their maximum value around 1.6 h later for glucosides and 2.5 h for glucuronides. Total urinary excretion of red wine anthocyanins was 0.05+/-0.01% of the administered dose within 24 h. About 94% of the excreted anthocyanins was found in urine within 6 h. In spite of the low concentration of anthocyanins found in plasma, an increase in the antioxidant capacity and a decrease in MCP-1 circulating levels in plasma were observed.


British Journal of Nutrition | 2015

Low-grade inflammation, diet composition and health: current research evidence and its translation.

Anne Marie Minihane; Sophie Vinoy; Wendy R. Russell; Athanasia Baka; Helen M. Roche; Kieran M. Tuohy; Jessica L. Teeling; Ellen E. Blaak; Michael Fenech; David Vauzour; Harry J McArdle; Bas Kremer; Luc Sterkman; Katerina Vafeiadou; M. Massi Benedetti; Christine M. Williams; Philip C. Calder

The importance of chronic low-grade inflammation in the pathology of numerous age-related chronic conditions is now clear. An unresolved inflammatory response is likely to be involved from the early stages of disease development. The present position paper is the most recent in a series produced by the International Life Sciences Institutes European Branch (ILSI Europe). It is co-authored by the speakers from a 2013 workshop led by the Obesity and Diabetes Task Force entitled ‘Low-grade inflammation, a high-grade challenge: biomarkers and modulation by dietary strategies’. The latest research in the areas of acute and chronic inflammation and cardiometabolic, gut and cognitive health is presented along with the cellular and molecular mechanisms underlying inflammation–health/disease associations. The evidence relating diet composition and early-life nutrition to inflammatory status is reviewed. Human epidemiological and intervention data are thus far heavily reliant on the measurement of inflammatory markers in the circulation, and in particular cytokines in the fasting state, which are recognised as an insensitive and highly variable index of tissue inflammation. Potential novel kinetic and integrated approaches to capture inflammatory status in humans are discussed. Such approaches are likely to provide a more discriminating means of quantifying inflammation–health/disease associations, and the ability of diet to positively modulate inflammation and provide the much needed evidence to develop research portfolios that will inform new product development and associated health claims.


British Journal of Nutrition | 2002

Eicosapentaenoic acid and docosahexaenoic acid from fish oils: differential associations with lipid responses

Elizabeth C. Leigh-Firbank; Anne Marie Minihane; David S. Leake; J. Wright; M. C. Murphy; Bruce A. Griffin; Christine M. Williams

Fish-oil supplementation can reduce circulating triacylglycerol (TG) levels and cardiovascular risk. This study aimed to assess independent associations between changes in platelet eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and fasting and postprandial (PP) lipoprotein concentrations and LDL oxidation status, following fish-oil intervention. Fifty-five mildly hypertriacylglycerolaemic (TG 1.5-4.0 mmol/l) men completed a double-blind placebo controlled cross over study, where individuals consumed 6 g fish oil (3 g EPA+DHA) or 6 g olive oil (placebo)/d for two 6-week intervention periods, with a 12-week wash-out period in between. Fish-oil intervention resulted in a significant increase in the platelet phospholipid EPA (+491 %, P<0.001) and DHA (+44 %, P<0.001) content and a significant decrease in the arachidonic acid (-10 %, P<0.001) and gamma-linolenic acid (-24 %, P<0.001) levels. A 30 % increase in ex vivo LDL oxidation (P<0.001) was observed. In addition, fish oil resulted in a significant decrease in fasting and PP TG levels (P<0.001), PP non-esterified fatty acid (NEFA) levels, and in the percentage LDL as LDL-3 (P=0.040), and an increase in LDL-cholesterol (P=0.027). In multivariate analysis, changes in platelet phospholipid DHA emerged as being independently associated with the rise in LDL-cholesterol, accounting for 16 % of the variability in this outcome measure (P=0.030). In contrast, increases in platelet EPA were independently associated with the reductions in fasting (P=0.046) and PP TG (P=0.023), and PP NEFA (P=0.015), explaining 15-20 % and 25 % of the variability in response respectively. Increases in platelet EPA+DHA were independently and positively associated with the increase in LDL oxidation (P=0.011). EPA and DHA may have differential effects on plasma lipids in mildly hypertriacylglycerolaemic men.


Xenobiotica | 2003

Antioxidant and free radical scavenging activity of isoflavone metabolites

Gerald Rimbach; S. De Pascual-Teresa; B. A. Ewins; S. Matsugo; Y. Uchida; Anne Marie Minihane; Rufus Turner; Katerina Vafeiadou; P. D. Weinberg

1. Soy isoflavones have been extensively studied because of their possible health-promoting effects. Genistein and daidzein, the major isoflavone aglycones, have received most attention; however, they undergo extensive metabolism in the gut and liver, which might affect their biological properties. 2. The antioxidant activity, free radical-scavenging properties and selected cellular effects of the isoflavone metabolites equol, 8-hydroxydaidzein, O-desmethylangiolensin, and 1,3,5 trihydroxybenzene were investigated in comparison with their parent aglycones, genistein and daidzein. 3. Electron spin resonance spectroscopy indicated that 8-hydroxydaidzein was the most potent scavenger of hydroxyl and superoxide anion radicals. Isoflavone metabolites also exhibited higher antioxidant activity than parent compounds in standard antioxidant (FRAP and TEAC) assays. However, for the suppression of nitric oxide production by activated macrophages, genistein showed the highest potency, followed by equol and daidzein. 4. The metabolism of isoflavones affects their free radical scavenging and antioxidant properties, and their cellular activity, but the effects are complex.

Collaboration


Dive into the Anne Marie Minihane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aedin Cassidy

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

David Vauzour

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge