Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne-Marie Pourcher is active.

Publication


Featured researches published by Anne-Marie Pourcher.


Applied and Environmental Microbiology | 2006

Dynamics of a pig slurry microbial community during anaerobic storage and management.

Pascal Peu; Hubert Brugère; Anne-Marie Pourcher; Monique Kérourédan; Jean-Jacques Godon; Jean-Philippe Delgenès; Patrick Dabert

ABSTRACT The microbial community of a pig slurry on a farm was monitored for 6 months using both molecular and cultural approaches. Sampling was carried out at all the different stages of effluent handling, from the rearing build-up to slurry spreading. Total DNA of each sample was extracted and analyzed by PCR-single-strand conformation polymorphism (SSCP) analysis using primers targeting the 16S rRNA genes from the archaeal and bacterial domains and also the Eubacterium-Clostridium, Bacillus-Streptococcus-Lactobacillus, and Bacteroides-Prevotella groups. A comparison of the SSCP profiles showed that there were rapid changes in the dominant bacterial community during the first 2 weeks of anaerobic storage and that the community was relatively stable thereafter. Several bacterial populations, identified as populations closely related to uncultured Clostridium and Porphyromonas and to Lactobacillus and Streptococcus cultured species commonly isolated from pig feces, remained present and dominant from the rearing build-up to the time of spreading. Enumeration of fecal indicators (enterococci and Escherichia coli) performed in parallel using cultural methods revealed the same trends. On the other hand, the archaeal community adapted slowly during pig slurry storage, and its diversity increased. A shift between two hydrogenotrophic methanogenic Methanobrevibacter populations from the storage pit to the pond was observed. Microorganisms present in pig slurry at the time of spreading could not be detected in soil after spreading by either molecular or cultural techniques, probably because of the detection limit inherent in the two techniques.


Water Research | 2010

Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France

Michele Gourmelon; Marie-Paule Caprais; Sophie Mieszkin; Romain Marti; Nathalie Wéry; Emilie Jardé; Marc Derrien; P. Y. Communal; A. Jaffrezic; Anne-Marie Pourcher

The microbiological quality of coastal or river waters can be affected by faecal pollution from human or animal sources. An efficient MST (Microbial Source Tracking) toolbox consisting of several host-specific markers would therefore be valuable for identifying the origin of the faecal pollution in the environment and thus for effective resource management and remediation. In this multidisciplinary study, after having tested some MST markers on faecal samples, we compared a selection of 17 parameters corresponding to chemical (steroid ratios, caffeine, and synthetic compounds), bacterial (host-specific Bacteroidales, Lactobacillus amylovorus and Bifidobacterium adolescentis) and viral (genotypes I-IV of F-specific bacteriophages, FRNAPH) markers on environmental water samples (n = 33; wastewater, runoff and river waters) with variable Escherichia coli concentrations. Eleven microbial and chemical parameters were finally chosen for our MST toolbox, based on their specificity for particular pollution sources represented by our samples and their detection in river waters impacted by human or animal pollution; these were: the human-specific chemical compounds caffeine, TCEP (tri(2-chloroethyl)phosphate) and benzophenone; the ratios of sitostanol/coprostanol and coprostanol/(coprostanol+24-ethylcopstanol); real-time PCR (Polymerase Chain Reaction) human-specific (HF183 and B. adolescentis), pig-specific (Pig-2-Bac and L. amylovorus) and ruminant-specific (Rum-2-Bac) markers; and human FRNAPH genogroup II.


Environmental Science & Technology | 2012

Relative Decay of Fecal Indicator Bacteria and Human-Associated Markers: A Microcosm Study Simulating Wastewater Input into Seawater and Freshwater

Laurent Jeanneau; O. Solecki; Nathalie Wéry; Emilie Jardé; Michele Gourmelon; P. Y. Communal; Marie-Paule Caprais; Gérard Gruau; Anne-Marie Pourcher

Fecal contaminations of inland and coastal waters induce risks to human health and economic losses. To improve water management, specific markers have been developed to differentiate between sources of contamination. This study investigates the relative decay of fecal indicator bacteria (FIB, Escherichia coli and enterococci) and six human-associated markers (two bacterial markers: Bacteroidales HF183 (HF183) and Bifidobacterium adolescentis (BifAd); one viral marker: genogroup II F-specific RNA bacteriophages (FRNAPH II); three chemical markers: caffeine and two fecal stanol ratios) in freshwater and seawater microcosms seeded with human wastewater. These experiments were performed in darkness, at 20 °C and under aerobic conditions. The modeling of the decay curves allows us (i) to compare FIB and markers and (ii) to classify markers according to their persistence in seawater (FRNAPH II < HF183, stanol ratios < BifAd, caffeine) and in freshwater (HF183, stanol ratios < FRNAPH II < BifAd < caffeine). Although those results depend on the experimental conditions, this study represents a necessary step to develop and validate an interdisciplinary toolbox for the investigation of the sources of fecal contaminations.


Water Research | 2010

Human-specific fecal bacteria in wastewater treatment plant effluents

Nathalie Wéry; Caroline L. Monteil; Anne-Marie Pourcher; Jean-Jacques Godon

The objective of this study was to identify fecal bacteria able to persist after wastewater treatment and that could be used as indicators of human fecal contamination. In a first step, the diversity of Bacteroidales, Clostridiaceae, Bifidobacterium, and Bacillus-Streptococcus-Lactobacillus cluster (BSL) was analysed using a fingerprint technique (CE-SSCP) and 16S rDNA libraries in waters collected at the end of the treatment process in different urban wastewater treatment plants. For each group, dominant bacteria present in most effluents were identified. Their origin (human feces, animal feces, non-fecal) was then analysed based on data of their closest relatives in public 16S rDNA databases. Among fecal bacteria recovered in the treated effluents analysed, phylotypes close to Bifidobacterium adolescentis and Bacteroides caccae seem to be specific to human beings. Phylotypes gathering only sequences of human fecal origin were also identified among the BSL and Clostridiaceae, two bacterial groups which have been poorly investigated for bacterial source-tracking purpose. Since these bacteria were detected post-treatment in most wastewater treatment plants, they may constitute potential new indicators of fecal contamination specific to humans that could be used to track fecal contamination of surface water by sewage.


Applied Microbiology and Biotechnology | 2014

Occurrence of lignin degradation genotypes and phenotypes among prokaryotes

Jiang-Hao Tian; Anne-Marie Pourcher; Théodore Bouchez; Eric Gelhaye; Pascal Peu

A number of prokaryotes actively contribute to lignin degradation in nature and their activity could be of interest for many applications including the production of biogas/biofuel from lignocellulosic biomass and biopulping. This review compares the reliability and efficiency of the culture-dependent screening methods currently used for the isolation of ligninolytic prokaryotes. Isolated prokaryotes exhibiting lignin-degrading potential are presented according to their phylogenetic groups. With the development of bioinformatics, culture-independent techniques are emerging that allow larger-scale data mining for ligninolytic prokaryotic functions but today, these techniques still have some limits. In this work, two phylogenetic affiliations of isolated prokaryotes exhibiting ligninolytic potential and laccase-encoding prokaryotes were determined on the basis of 16S rDNA sequences, providing a comparative view of results obtained by the two types of screening techniques. The combination of laboratory culture and bioinformatics approaches is a promising way to explore lignin-degrading prokaryotes.


Water Research | 2011

Persistence of microbial and chemical pig manure markers as compared to faecal indicator bacteria survival in freshwater and seawater microcosms

O. Solecki; Laurent Jeanneau; Emilie Jardé; Michele Gourmelon; Charlotte Marin; Anne-Marie Pourcher

Natural seawater and freshwater microcosms inoculated with pig manure were set up to determine the persistence of pig faecal microbial and chemical markers in these two types of surface water. The concentrations of Lactobacillus amylovorus, the Bacteroidales Pig-2-Bac 16S rRNA genetic marker, five stanols and the evolution of two ratios of stanols, R1 (coprostanol to the sum of coprostanol and 24-ethylcoprostanol) and R2 (sitostanol to coprostanol) were analyzed during two months along with the concentration of Faecal Indicator Bacteria (FIB). Pig manure was inoculated to unfiltered water microcosms incubated aerobically at 18 °C in the dark. The faecal contamination load represented by the concentrations of culturable Escherichia coli and/or enterococci remained for two months in the freshwater and seawater microcosms water column. These concentrations followed a biphasic decay pattern with a 97% reduction of the initial amount during a first rapid phase (<6 days) and a remaining proportion undergoing a slower or null second decline. The L. amylovorus marker and five stanols persisted as long as the indicators in both treatments. The Pig-2-Bac marker persisted 20 and 27 days in seawater and freshwater, respectively. The ratios R1 and R2 were in the range specific to pig manure until day 6 in both types of water. These results indicate that Pig-2-Bac, L. amylovorus and stanol ratios might be used in combination to complement FIB testing to determine the pig source of fecal pollution. However, stanol ratios are to be used when the time point of the discharge is known.


Applied and Environmental Microbiology | 2010

Evaluation of Lactobacillus sobrius/L. amylovorus as a new microbial marker of pig manure.

Romain Marti; Patrick Dabert; Christine Ziebal; Anne-Marie Pourcher

ABSTRACT Based on a comparison of the dominant microbial populations in 17 pig manure samples and using a molecular typing method, we identified a species, Lactobacillus sobrius and Lactobacillus amylovorus (which now are considered a single species and are designated L. sobrius/amylovorus here), that was consistently found in manure. The aim of the present study was to confirm by real-time PCR the relevance of this species as a marker of pig fecal contamination. The specificity of L. sobrius/amylovorus was evaluated in human and animal DNA extracted from feces. The real-time PCR assay then was applied to water samples, including effluents from urban wastewater treatment plants, runoff water, and rivers. L. sobrius/amylovorus was consistently present in all samples of swine origin: 48 fecal samples, 18 from raw manure and 10 from biologically treated manure at mean concentrations of 7.2, 5.9, and 5.0 log10 cells/g, respectively. The species was not detected in any of the other livestock feces (38 samples from cattle and 16 from sheep), in the 27 human fecal samples, or in the 13 effluent samples from urban wastewater treatment plants. Finally, L. sobrius/amylovorus was not detected in runoff water contaminated by cattle slurry, but it was quantified at concentrations ranging from 3.7 to 6.5 log10 cells/100 ml in runoff water collected after pig manure was spread on soil. Among the stream water samples in which cultured Escherichia coli was detected, 23% tested positive for L. sobrius/amylovorus. The results of this study indicate that the quantification of L. sobrius/amylovorus using real-time PCR will be useful for identifying pig fecal contamination in surface waters.


Letters in Applied Microbiology | 2006

Survival of Listeria monocytogenes and Enterococcus faecium in sludge evaluated by real‐time PCR and culture methods

Nathalie Wéry; Anne-Marie Pourcher; V. Stan; Jean-Philippe Delgenès; F. Picard-Bonnaud; Jean-Jacques Godon

Aims:  This study evaluates the behaviour in spiked sludge of a pathogenic bacteria, Listeria monocytogenes, by cultural and molecular techniques, and compares its survival with the one of a faecal indicator, Enterococcus faecium.


Journal of Applied Microbiology | 2011

Effect of oxygen and temperature on the dynamic of the dominant bacterial populations of pig manure and on the persistence of pig‐associated genetic markers, assessed in river water microcosms

Romain Marti; Sophie Mieszkin; O. Solecki; Anne-Marie Pourcher; Dominique Hervio-Heath; Michele Gourmelon

Aims:  The aim is to evaluate the dynamic of Bacteroides–Prevotella and Bacillus–Streptococcus–Lactobacillus populations originating from pig manure and the persistence of pig‐associated markers belonging to these groups according to temperature and oxygen.


Applied and Environmental Microbiology | 2009

Pig manure contamination marker selection based on the influence of biological treatment on the dominant fecal microbial groups.

Romain Marti; Patrick Dabert; Anne-Marie Pourcher

ABSTRACT The objective of this study was to identify a microbial marker for pig manure contamination. We quantified the persistence of four dominant bacterial groups from the pig intestinal tract throughout manure handling at 10 livestock operations (including aerobic digestion) by using molecular typing. The partial 16S rRNA genes of Bacteroides-Prevotella, Eubacterium-Clostridiaceae, Bacillus-Streptococcus-Lactobacillus (BSL), and Bifidobacterium group isolates were amplified and analyzed by capillary electrophoresis single-strand conformation polymorphism. The most dominant bacterial populations were identified by cloning and sequencing their 16S rRNA genes. The results showed that Bifidobacterium spp. and, to a lesser extent, members of the BSL group, were less affected by the aerobic treatment than either Eubacterium-Clostridiaceae or Bacteroides-Prevotella. Two Bifidobacterium species found in raw manure were still present in manure during land application, suggesting that they can survive outside the pig intestinal tract and also survive aerobic treatment. The 16S-23S rRNA internal transcribed spacer of one species, Bifidobacterium thermacidophilum subsp. porcinum, was sequenced, and a specific pair of primers was designed for its detection in the environment. With this nested PCR assay, this potential marker was not detected in samples from 30 bovine, 30 poultry, and 28 human fecal samples or in 15 urban wastewater effluents. As it was detected in runoff waters after spreading of pig manure, we propose this marker as a suitable microbial indicator of pig manure contamination.

Collaboration


Dive into the Anne-Marie Pourcher's collaboration.

Top Co-Authors

Avatar

Emilie Jardé

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Patrick Dabert

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nathalie Wéry

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Laurent Jeanneau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Paul Robin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Philippe Morand

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Daniel Cluzeau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge