Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Marie Vinggaard is active.

Publication


Featured researches published by Anne Marie Vinggaard.


Reproductive Toxicology | 2012

Persistent developmental toxicity in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides.

Pernille Rosenskjold Jacobsen; Marta Axelstad; Julie Boberg; Louise Krag Isling; Sofie Christiansen; Karen Mandrup; Line Olrik Berthelsen; Anne Marie Vinggaard; Ulla Hass

There is growing concern of permanent damage to the endocrine and nervous systems after developmental exposure to endocrine disrupting chemicals. In this study the permanent reproductive and neurobehavioral effects of combined exposure to five endocrine disrupting pesticides, epoxiconazole, mancozeb, prochloraz, tebuconazole and procymidone, were examined. Pregnant and lactating rat dams were dosed with a mixture of the five pesticides at three different doses, or with the individual pesticides at one of two doses. Adverse effects were observed in young and adult male offspring from the group exposed to the highest dose of the mixture. These included reduced prostate and epididymis weights, increased testes weights, altered prostate histopathology, increased density of mammary glands, reduced sperm counts, and decreased spatial learning. As no significant effects were seen following single compound exposure at the doses included in the highest mixture dose, these results indicate cumulative adverse effects of the pesticide mixture.


Environmental Health | 2013

Science and policy on endocrine disrupters must not be mixed: a reply to a “common sense” intervention by toxicology journal editors

Åke Bergman; Anna-Maria Andersson; Georg Becher; Martin van den Berg; Bruce Blumberg; Poul Bjerregaard; Carl-Gustav Bornehag; Riana Bornman; Ingvar Brandt; Jayne V. Brian; Stephanie C. Casey; Paul A. Fowler; Héloïse Frouin; Linda C. Giudice; Taisen Iguchi; Ulla Hass; Susan Jobling; Anders Juul; Karen A. Kidd; Andreas Kortenkamp; Monica Lind; Olwenn V. Martin; Derek C. G. Muir; Roseline Ochieng; Nicholas Olea; Leif Norrgren; Erik Ropstad; Peter S. Ross; Christina Rudén; Martin Scheringer

The “common sense” intervention by toxicology journal editors regarding proposed European Union endocrine disrupter regulations ignores scientific evidence and well-established principles of chemical risk assessment. In this commentary, endocrine disrupter experts express their concerns about a recently published, and is in our considered opinion inaccurate and factually incorrect, editorial that has appeared in several journals in toxicology. Some of the shortcomings of the editorial are discussed in detail. We call for a better founded scientific debate which may help to overcome a polarisation of views detrimental to reaching a consensus about scientific foundations for endocrine disrupter regulation in the EU.


Environmental Health Perspectives | 2007

Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: new data and a brief review.

Eva Cecilie Bonefeld-Jørgensen; Manhai Long; Marlene V. Hofmeister; Anne Marie Vinggaard

Background An array of environmental compounds is known to possess endocrine disruption (ED) potentials. Bisphenol A (BPA) and bisphenol A dimethacrylate (BPA-DM) are monomers used to a high extent in the plastic industry and as dental sealants. Alkylphenols such as 4-n-nonylphenol (nNP) and 4-n-octylphenol (nOP) are widely used as surfactants. Objectives We investigated the effect in vitro of these four compounds on four key cell mechanisms including transactivation of a) the human estrogen receptor (ER), b) the human androgen receptor (AR), c) the aryl hydrocarbon receptor (AhR), and d) aromatase activity. Results All four compounds inhibited aromatase activity and were agonists and antagonists of ER and AR, respectively. nNP increased AhR activity concentration-dependently and further increased the 2,3,7,8-tetrachlorodibenzo-p-dioxin AhR action. nOP caused dual responses with a weak increased and a decreased AhR activity at lower (10−8 M) and higher concentrations (10−5–10−4 M), respectively. AhR activity was inhibited with BPA (10−5–10−4 M) and weakly increased with BPA-DM (10−5 M), respectively. nNP showed the highest relative potency (REP) compared with the respective controls in the ER, AhR, and aromatase assays, whereas similar REP was observed for the four chemicals in the AR assay. Conclusion Our in vitro data clearly indicate that the four industrial compounds have ED potentials and that the effects can be mediated via several cellular pathways, including the two sex steroid hormone receptors (ER and AR), aromatase activity converting testosterone to estrogen, and AhR; AhR is involved in syntheses of steroids and metabolism of steroids and xenobiotic compounds.


Toxicology in Vitro | 2000

Screening of selected pesticides for inhibition of CYP19 aromatase activity in vitro

Anne Marie Vinggaard; C. Hnida; Vibeke Breinholt; John Christian Larsen

Many pesticides are able to block or activate the steroid hormone receptors and/or to affect the levels of sex hormones, thereby potentially affecting the development or expression of the male and female reproductive system or both. This emphasizes the relevance of screening pesticides for a wide range of hormone-mimicking effects. Twenty-two pesticides were tested for their ability to affect CYP19 aromatase activity in human placental microsomes using the classical [(3)H](2)O method. Prochloraz, imazalil, propioconazole, fenarimol, triadimenol, triadimefon (all fungicides), and dicofol (an acaricide) gave rise to a statistically significant inhibition of aromatase activity. The IC(50)s of prochloraz, imazalil, propioconazole fenarimol, triadimenol, and triadimefon were calculated from dose-response curves to be 0.04, 0.34, 6.5, 10, 21 and 32 microM, respectively. The IC(50) of dicofol was greater than 50 microM. The positive control 4-hydroxyandrostendione (1 microM) caused an inhibition of aromatase activity by 74%. The compounds, which did not affect the aromatase activity, were bromopropylate, chlorfenvinphos, chlorobenzilate, chlorpyrifos, diuron, heptachlor, iprodion, linuron, pentachlorphenol, procymidon, propyzamide, quintozen, tetrachlorvinphos and tetradifon. With the purpose of comparing the results for fenarimol obtained with the microsomal system with data from an intact cell system, an aromatase assay based on JEG-3 cells was established. 4-Hydroxyandrostendione (1 microM) inhibited the aromatase activity in JEG-3 cells by 94%. The IC(50) for fenarimol in this system was 2 microM, slightly lower than that observed in the microsomal system. For the first time, fenarimol has been demonstrated to inhibit aromatase activity in human tissues and, furthermore, propioconazole, triadimefon, and triadimenol were identified as weak aromatase inhibitors. In conclusion, seven out of 22 tested pesticides turned out to be weak to moderate aromatase inhibitors in vitro, indicating the relevance of elucidating the endocrine effects in vivo of these- compounds.


Environmental Health Perspectives | 2009

Synergistic disruption of external male sex organ development by a mixture of four antiandrogens

Sofie Christiansen; Martin Scholze; Majken Dalgaard; Anne Marie Vinggaard; Marta Axelstad; Andreas Kortenkamp; Ulla Hass

Background By disrupting the action of androgens during gestation, certain chemicals present in food, consumer products, and the environment can induce irreversible demasculinization and malformations of sex organs among male offspring. However, the consequences of simultaneous exposure to such chemicals are not well described, especially when they exert their actions by differing molecular mechanisms. Objectives To fill this gap, we investigated the effects of mixtures of a widely used plasticizer, di(2-ethylhexyl) phthalate (DEHP); two fungicides present in food, vinclozolin and prochloraz; and a pharmaceutical, finasteride, on landmarks of male sexual development in the rat, including changes in anogenital distance (AGD), retained nipples, sex organ weights, and malformations of genitalia. These chemicals were chosen because they disrupt androgen action with differing mechanisms of action. Results Strikingly, the effect of combined exposure to the selected chemicals on malformations of external sex organs was synergistic, and the observed responses were greater than would be predicted from the toxicities of the individual chemicals. In relation to other hallmarks of disrupted male sexual development, including changes in AGD, retained nipples, and sex organ weights, the combined effects were dose additive. When the four chemicals were combined at doses equal to no observed adverse effect levels estimated for nipple retention, significant reductions in AGD were observed in male offspring. Conclusions Because unhindered androgen action is essential for human male development in fetal life, these findings are highly relevant to human risk assessment. Evaluations that ignore the possibility of combination effects may lead to considerable underestimations of risks associated with exposures to chemicals that disrupt male sexual differentiation.


Environmental Health Perspectives | 2007

Combined Exposure to Anti-Androgens Exacerbates Disruption of Sexual Differentiation in the Rat

Ulla Hass; Martin Scholze; Sofie Christiansen; Majken Dalgaard; Anne Marie Vinggaard; Marta Axelstad; Stine Broeng Metzdorff; Andreas Kortenkamp

Objective The aim of this study was to assess whether the joint effects of three androgen receptor antagonists (vinclozolin, flutamide, procymidone) on male sexual differentiation after in utero and postnatal exposures can be predicted based on dose–response data of the individual chemicals. Methods Test chemicals and mixtures were administered by gavage to time-mated nulliparous, young adult Wistar rats from gestational day 7 to the day before expected birth, and from postnatal days 1–16. Changes in anogenital distance (AGD) and nipple retention (NR) in male offspring rats were chosen as end points for extensive dose–response studies. Vinclozolin, flutamide, and procymidone were combined at a mixture ratio proportional to their individual potencies for causing retention of six nipples in male offspring. Results With AGD as the end point, the joint effects of the three anti-androgens were essentially dose additive. The observed responses for NR were slightly higher than those expected on the basis of dose addition. A combination of doses of each chemical, which on its own did not produce statistically significant AGD alterations, induced half-maximal mixture effects. At individual doses associated with only modest effects on NR, the mixture induced NR approaching female values in the males. Conclusions Effects of a mixture of similarly acting anti-androgens can be predicted fairly accurately on the basis of the potency of the individual mixture components by using the dose addition concept. Exposure to anti-androgens, which individually appears to exert only small effects, may induce marked responses in concert with, possibly unrecognized, similarly acting chemicals.


Toxicological Sciences | 2014

Are Structural Analogues to Bisphenol A Safe Alternatives

Anna Kjerstine Rosenmai; Marianne Dybdahl; Mikael Pedersen; Barbara van Vugt-Lussenburg; Eva Bay Wedebye; Camilla Taxvig; Anne Marie Vinggaard

BACKGROUND Bisphenol A (BPA) is a chemical with widespread human exposure suspected of causing low-dose effects. Thus, a need for developing alternatives to BPA exists. Structural analogues of BPA have already been detected in foods and humans. Due to the structural analogy of the alternatives, there is a risk of effects similar to BPA. OBJECTIVES The aim was to elucidate and compare the hazards of bisphenol B (BPB), bisphenol E (BPE), bisphenol F (BPF), bisphenol S (BPS) and 4-cumylphenol (HPP) to BPA. METHODS In vitro studies on steroidogenesis, receptor activity, and biomarkers of effect, as well as Quantitative Structure-Activity Relationship (QSAR) modeling. RESULTS All test compounds caused the same qualitative effects on estrogen receptor and androgen receptor activities, and most of the alternatives exhibited potencies within the same range as BPA. Hormone profiles for the compounds indicated a specific mechanism of action on steroidogenesis which generally lead to decreased androgen, and increased estrogen and progestagen levels. Differential effects on corticosteroid synthesis were observed suggesting a compound-specific mechanism. Overall, BPS was less estrogenic and antiandrogenic than BPA, but BPS showed the largest efficacy on 17α-hydroxyprogesterone (17α-OH progesterone). Finally, there were indications of DNA damage, carcinogenicity, oxidative stress, effects on metabolism, and skin sensitization of one or more of the test compounds. CONCLUSIONS Interference with the endocrine system was the predominant effect of the test compounds. A substitution of BPA with these structural analogues should be carried out with caution.


Toxicology | 2000

Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro.

Anne Marie Vinggaard; Christina Hnida; John Christian Larsen

Nine structurally different polycyclic aromatic hydrocarbons (PAHs) were tested for their ability to either agonize or antagonize the human androgen receptor (hAR) in a sensitive reporter gene assay based on CHO cells transiently cotransfected with a hAR vector and an MMTV-LUC vector. Benz[a]anthracene (B[a]A), benzo[a]pyrene (B[a]P), fluoranthene, chrysene and 7,12-dimethylbenz[a]anthracene (DMBA) were acting as antiandrogens in vitro, resulting in IC(50) values of 3.2, 3.9, 4.6, 10.3 and 10.4 microM, respectively. Only at the highest concentration tested (10 microM), a slight inhibitory effect by pyrene, phenanthrene, and anthracene was observed. In contrast, dibenzo[a,h]anthracene (DB[a,h]A) gave rise to an agonistic effect, which was added upon the effect of the androgen receptor agonist R1881 (0.1 nM). The antiandrogenic responses by PAHs (10 microM) were found to be fully reversible, determined in the presence of increasing concentrations of R1881. No cytotoxic effects of the tested compounds were observed as determined either by metabolic reduction using AlamarBlue (up to 20 microM) or determined in cells transfected with a constitutively active hAR (up to 10 microM). The well-known ability of certain PAHs to activate the Ah receptor was assessed in H4IIE liver cancer cells, stably transfected with a luciferase reporter gene system. The positive control 2,3,7,8-tetrachlorodibenzodioxin (TCDD) caused a 13-14-fold induction of luciferase activity reaching maximum activity at 0.1 nM. DB[a,h]A, B[a]P, Chrysene, B[a]A and DMBA gave rise to a 4.5-fold induction of luciferase activity at 0.03, 0.4, 0.89, 3.06, and 9.27 microM, respectively, whereas fluoranthene, pyrene, phenanthrene and anthracene were without effect. In conclusion, no clear correlation between the antiandrogenic effects and the Ah receptor activation in vitro was seen. However, the Ah receptor agonists containing four or five aromatic rings (i.e. B [a] A, B [a] P, chrysene, DMBA) appeared to be the most potent antiandrogens (with the exception of DB [a, h] A), whereas those not able to activate the Ah receptor containing three or four aromatic rings (i.e. pyrene, phenanthrene, anthracene) displayed either very weak or no antiandrogenic effect at concentrations up to 10 microM (with the exception of fluoranthene which blocked the hAR at lower concentrations, but did not activate the Ah receptor).


Toxicology | 2008

Impact of diisobutyl phthalate and other PPAR agonists on steroidogenesis and plasma insulin and leptin levels in fetal rats

Julie Boberg; Stine Broeng Metzdorff; Rasmus Wortziger; Marta Axelstad; Leon J. S. Brokken; Anne Marie Vinggaard; Majken Dalgaard; Christine Nellemann

Endocrine disrupting chemicals can induce malformations and impairment of reproductive function in experimental animals and may have similar effects in humans. Recently, the environmental obesogen hypothesis was proposed, suggesting that environmental chemicals contribute to the development of obesity and insulin resistance. These effects could be related to chemical interaction with nuclear receptors such as the peroxisome proliferator activated receptors (PPARs). As several testosterone-reducing drugs are PPAR activators, we aimed to examine whether four PPAR agonists were able to affect fetal testosterone production and masculinization of rats. Additionally, we wished to examine whether these chemicals affected fetal plasma levels of insulin and leptin, which play important roles in the developmental programming of the metabolic system. Pregnant Wistar rats were exposed from gestation day (GD) 7-21 to diisobutyl phthalate (DiBP), butylparaben, perfluorooctanoate, or rosiglitazone (600, 100, 20, or 1 mg/kg bw/day, respectively). Endocrine endpoints were studied in offspring at GD 19 or 21. DiBP, butylparaben and rosiglitazone reduced plasma leptin levels in male and female offspring. DiBP and rosiglitazone additionally reduced fetal plasma insulin levels. In males, DiBP reduced anogenital distance, testosterone production and testicular expression of Insl-3 and genes related to steroidogenesis. PPARalpha mRNA levels were reduced by DiBP at GD 19 in testis and liver. In females, DiBP increased anogenital distance and increased ovarian aromatase mRNA levels. This study reveals new targets for phthalates and parabens in fetal male and female rats and contributes to the increasing concern about adverse effects of human exposure to these compounds.


Reproductive Toxicology | 2010

Endocrine disrupting effects in vitro of conazole antifungals used as pesticides and pharmaceuticals.

Mia Birkhoej Kjaerstad; Camilla Taxvig; Christine Nellemann; Anne Marie Vinggaard; Helle Raun Andersen

Widely used conazole antifungals were tested for endocrine disruptive effects using a panel of in vitro assays. They all showed endocrine disrupting potential and ability to act via several different mechanisms. Overall the imidazoles (econazole, ketoconazole, miconazole, prochloraz) were more potent than the triazoles (epoxiconazole, propiconazole, tebuconazole). The critical mechanism seems to be disturbance of steroid biosynthesis. In the H295R cell assay, the conazoles decreased the formation of estradiol and testosterone, and increased the concentration of progesterone, indicating inhibition of enzymes involved in the conversion of progesterone to testosterone. Prochloraz was most potent followed by econazole~miconazole>ketoconazole>tebuconazole>epoxiconazole>propiconazole. In the MCF-7 cell proliferation assay, the conazoles showed anti-estrogenic effect, including aromatase inhibition, since they inhibited the response induced by both 17β-estradiol (miconazole>econazole~ketoconazole>prochloraz>tebuconazole>epoxiconazole>propiconazole) and testosterone (econazole>miconazole>prochloraz>ketoconazole>tebuconazole>epoxiconazole>propiconazole). The triazoles were anti-androgenic in an androgen receptor reporter gene assay (epoxiconazole∼tebuconazole>propiconazole). This effect could not be evaluated for the pharmaceutical imidazoles due to cytotoxicity.

Collaboration


Dive into the Anne Marie Vinggaard's collaboration.

Top Co-Authors

Avatar

Ulla Hass

National Institute of Occupational Health

View shared research outputs
Top Co-Authors

Avatar

Camilla Taxvig

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Julie Boberg

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Christine Nellemann

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Marta Axelstad

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Majken Dalgaard

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terje Svingen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Niels Hadrup

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Helle Raun Andersen

University of Southern Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge