Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Minert is active.

Publication


Featured researches published by Anne Minert.


Genome Research | 2010

Susceptibility to chronic pain following nerve injury is genetically affected by CACNG2

Jonathan Nissenbaum; Marshall Devor; Ze'ev Seltzer; Mathias Gebauer; Martin Michaelis; Michael Tal; Ruslan Dorfman; Merav Abitbul-Yarkoni; Yan Lu; Tina Elahipanah; Sonia delCanho; Anne Minert; Kaj Fried; Anna-Karin Persson; Hagai Y. Shpigler; Erez Shabo; Benjamin Yakir; Anne Pisanté; Ariel Darvasi

Chronic neuropathic pain is affected by specifics of the precipitating neural pathology, psychosocial factors, and by genetic predisposition. Little is known about the identity of predisposing genes. Using an integrative approach, we discovered that CACNG2 significantly affects susceptibility to chronic pain following nerve injury. CACNG2 encodes for stargazin, a protein intimately involved in the trafficking of glutamatergic AMPA receptors. The protein might also be a Ca(2+) channel subunit. CACNG2 has previously been implicated in epilepsy. Initially, using two fine-mapping strategies in a mouse model (recombinant progeny testing [RPT] and recombinant inbred segregation test [RIST]), we mapped a pain-related quantitative trait locus (QTL) (Pain1) into a 4.2-Mb interval on chromosome 15. This interval includes 155 genes. Subsequently, bioinformatics and whole-genome microarray expression analysis were used to narrow the list of candidates and ultimately to pinpoint Cacng2 as a likely candidate. Analysis of stargazer mice, a Cacng2 hypomorphic mutant, provided electrophysiological and behavioral evidence for the genes functional role in pain processing. Finally, we showed that human CACNG2 polymorphisms are associated with chronic pain in a cohort of cancer patients who underwent breast surgery. Our findings provide novel information on the genetic basis of neuropathic pain and new insights into pain physiology that may ultimately enable better treatments.


Experimental Neurology | 2007

Spontaneous pain following spinal nerve injury in mice

Anne Minert; Eran Gabay; Cecilia A. Dominguez; Zsuzsanna Wiesenfeld-Hallin; Marshall Devor

Autotomy behavior is frequently observed in rats and mice in which the nerves of the hindlimb are severed, denervating the paw. This is the neuroma model of neuropathic pain. A large body of evidence suggests that this behavior reflects the presence of spontaneous dysesthesia and pain. In contrast, autotomy typically does not develop in partial nerve injury pain models, leading to the belief that these animals develop hypersensibility to applied stimuli (allodynia and hyperalgesia), but not spontaneous pain. We have modified the widely used Chung (spinal nerve ligation [SNL]) model of neuropathic pain in a way that retains the fundamental neural lesion, but eliminates nociceptive sensory cover of the paw. These animals performed autotomy. Moreover, the heritable across strains predisposition to spontaneous pain behavior in this new proximal denervation model (SNN) was highly correlated with pain phenotype in the neuroma model suggesting that the pain mechanism in the two models is the same. Relative reproducibility of strain predispositions across laboratories was verified. These data indicate that the neural substrate for spontaneous pain is present in the Chung-SNL model, and perhaps in the other partial nerve injury models as well, but that spontaneous pain is not expressed as autotomy in these models because there is protective nociceptive sensory cover.


European Journal of Neuroscience | 2007

Sex‐specific variability and a ‘cage effect’ independently mask a neuropathic pain quantitative trait locus detected in a whole genome scan

Marshall Devor; Amit Gilad; Michal Arbilly; Jonathan Nissenbaum; Benjamin Yakir; Pnina Raber; Anne Minert; Anne Pisanté; Ariel Darvasi

Sex and environment may dramatically affect genetic studies, and thus should be carefully considered. Beginning with two inbred mouse strains with contrasting phenotype in the neuroma model of neuropathic pain (autotomy), we established a backcross population on which we conducted a genome‐wide scan. The backcross population was partially maintained in small social groups and partially in isolation. The genome scan detected one previously reported quantitative trait locus (QTL) on chromosome 15 (pain1), but no additional QTLs were found. Interestingly, group caging introduced phenotypic noise large enough to completely mask the genetic effect of the chromosome 15 QTL. The reason appears to be that group‐caging animals from the low‐autotomy strain together with animals from the high‐autotomy strain dramatically increases autotomy in the otherwise low‐autotomy mice (males or females). The converse, suppression of pain behaviour in the high‐autotomy strain when caged with the low‐autotomy strain was also observed, but only in females. Even in isolated mice, the genetic effect of the chromosome 15 QTL was significant only in females. To determine why, we evaluated autotomy levels of females in 12 different inbred stains of mice and compared them to previously reported levels for males. Strikingly larger environmental variation was observed in males than in females for this pain phenotype. The high baseline variance in males can explain the difficulty in detecting the genetic effect, which was readily seen in females. Our study emphasizes the importance of sex and environment in the genetic analysis of pain.


Neuropharmacology | 2010

Evaluation of the antiallodynic, teratogenic and pharmacokinetic profile of stereoisomers of valnoctamide, an amide derivative of a chiral isomer of valproic acid.

Dan Kaufmann; Boris Yagen; Anne Minert; Bogdan J. Wlodarczyk; Richard H. Finnell; Volker Schurig; Marshall Devor; Meir Bialer

The purpose of this study was to evaluate the stereoselective pain relieving (antiallodynic) activity, antiallodynic-anticonvulsant correlation, teratogenicity and pharmacokinetic profile of two stereoisomers of valnoctamide (VCD), a CNS-active amide derivative of a chiral isomer of valproic acid (VPA). The individual stereoisomers (diastereomers), (2R,3S)-VCD and (2S,3S)-VCD were synthesized and their antiallodynic activity was evaluated in rats using the spinal nerve ligation model of neuropathic pain. The pharmacokinetic profile of the two stereoisomers was evaluated in rats following: 1) i.p. administration of racemic-VCD, 2) i.p. administration of the individual stereoisomers (2R,3S)-VCD and (2S,3S)-VCD. Teratogenicity of racemic-VCD and its two individual stereoisomers was evaluated in a SWV mouse strain known to be highly susceptible to VPA-induced teratogenicity. Racemic-VCD, (2R,3S)-VCD and (2S,3S)-VCD showed a dose-related reversal of tactile allodynia with ED(50) values of 52, 61 and 39 mg/kg, respectively. (2S,3S)-VCD was significantly more potent than (2R,3S)-VCD but the opposite is true for its anticonvulsant-effect. In the teratogenicity evaluation racemic-VCD and its two individual stereoisomers showed mild embryotoxicity at doses 7-10 times higher than their antiallodynic-ED(50) values, while (2S,3S)-VCD was significantly less embryotoxic than (2R,3S)-VCD and racemic-VCD. Following administration of the racemic-VCD there was an increase in the primary pharmacokinetic parameters of (2S,3S)-VCD but not of (2R,3S)-VCD. This study demonstrates that both racemic-VCD and its stereoisomers show high potency as antiallodynic compounds and possess a wide safety margin. (2S,3S)-VCD is more potent and less embryotoxic than (2R,3S)-VCD and thus, has a potential to become a candidate for development as a new drug for treating neuropathic pain.


Pain | 2008

pain2: A neuropathic pain QTL identified on rat chromosome 2

Jonathan Nissenbaum; Hagai Y. Shpigler; Anne Pisanté; Sonia delCanho; Anne Minert; Ze'ev Seltzer; Marshall Devor; Ariel Darvasi

&NA; We aimed to locate a chronic pain‐associated QTL in the rat (Rattus norvegicus) based on previous findings of a QTL (pain1) on chromosome 15 of the mouse (Mus musculus). The work was based on rat selection lines HA (high autotomy) and LA (low autotomy) which show a contrasting pain phenotype in response to nerve injury in the neuroma model of neuropathic pain. An F2 segregating population was generated from HA and LA animals. Phenotyped F2 rats were genotyped on chromosome 7 and chromosome 2, regions that share a partial homology with mouse chromosome 15. Our interval mapping analysis revealed a LOD score value of 3.63 (corresponding to p = 0.005 after correcting for multiple testing using permutations) on rat chromosome 2, which is suggestive of the presence of a QTL affecting the predisposition to neuropathic pain. This QTL was mapped to the 14–26 cM interval of chromosome 2. Interestingly, this region is syntenic to mouse chromosome 13, rather than to the region of mouse chromosome 15 that contains pain1. This chromosomal position indicates that it is possibly a new QTL, and hence we name it pain2. Further work is needed to replicate and to uncover the underlying gene(s) in both species.


Experimental Neurology | 2016

Brainstem node for loss of consciousness due to GABAA receptor-active anesthetics

Anne Minert; Marshall Devor

The molecular agents that induce loss of consciousness during anesthesia are classically believed to act by binding to cognate transmembrane receptors widely distributed in the CNS and critically suppressing local processing and network connectivity. However, previous work has shown that microinjection of anesthetics into a localized region of the brainstem mesopontine tegmentum (MPTA) rapidly and reversibly induces anesthesia in the absence of global spread. This implies that functional extinction is determined by neural pathways rather than vascular distribution of the anesthetic agent. But does clinical (systemic-induced) anesthesia employ MPTA-linked circuitry? Here we show that cell-selective lesioning of the MPTA in rats does not, in itself, induce anesthesia or coma. However, it increases the systemic dose of pentobarbital required to induce anesthesia, in a manner proportional to the extent of the lesion. Such lesions also affect emergence, extending the duration of anesthesia. Off-target and sham lesions were ineffective. Combined with the prior microinjection data, we conclude that drug delivery to the MPTA is sufficient to induce loss-of-consciousness and that neurons in this locus are necessary for anesthetic induction at clinically relevant doses. Together, the results support an architecture for anesthesia with the MPTA serving as a key node in an endogenous network of dedicated pathways that switch between wake and unconsciousness. As such, the MPTA might also play a role in syncope, concussion and sleep.


Neuropharmacology | 2008

Evaluation of the enantioselective antiallodynic and pharmacokinetic profile of propylisopropylacetamide, a chiral isomer of valproic acid amide

Dan Kaufmann; Boris Yagen; Anne Minert; Michael Tal; Marshall Devor; Meir Bialer

Propylisopropylacetamide (PID) is a chiral CNS-active constitutional isomer of valpromide, the amide derivative of the major antiepileptic drug valproic acid (VPA). The purpose of this work was: a) To evaluate enantiospecific activity of PID on tactile allodynia in the Chung (spinal nerve ligation, SNL) model of neuropathic pain in rats; b) To evaluate possible sedation at effective antiallodynic doses, using the rotorod ataxia test; c) To investigate enantioselectivity in the pharmacokinetics of (R)- and (S)-PID in comparison to (R,S)-PID; and d) To determine electrophysiologically whether PID has the potential to affect tactile allodynia by suppressing ectopic afferent discharge in the peripheral nervous system (PNS). (R)-, (S)- and (R,S)-PID produced dose-related reversal of tactile allodynia with ED(50) values of 46, 48, 42 mg/kg, respectively. The individual PID enantiomers were not enantioselective in their antiallodynic activity. No sedative side-effects were observed at these doses. Following i.p. administration of the individual enantiomers, (S)-PID had lower clearance (CL) and volume of distribution (V) and a shorter half-life (t(1/2)) than (R)-PID. However following administration of (R,S)-PID, both enantiomers had similar CL and V, but (R)-PID had a longer t(1/2). Systemic administration of (R,S)-PID at antiallodynic doses did not suppress spontaneous ectopic afferent discharge generated in the injured peripheral nerve, suggesting that its antiallodynic action is exerted in the CNS rather than the PNS. Both of PIDs enantiomers, and the racemate, are more potent antiallodynic agents than VPA and have similar potency to gabapentin. Consequently, they have the potential to become new drugs for treating neuropathic pain.


European Journal of Neuroscience | 2016

Model of anaesthetic induction by unilateral intracerebral microinjection of GABAergic agonists.

Marshall Devor; Zalkind; Yelena Fishman; Anne Minert

General anaesthetic agents induce loss of consciousness coupled with suppression of movement, analgesia and amnesia. Although these diverse functions are mediated by neural structures located in wide‐ranging parts of the neuraxis, anaesthesia can be induced rapidly and reversibly by bilateral microinjection of minute quantities of γ‐aminobutyric acid (GABA)A‐R agonists at a small, focal locus in the mesopontine tegmentum (MPTA). State switching under these circumstances is presumably executed by dedicated neural pathways and does not require widespread distribution of the anaesthetic agent itself, the classical assumption regarding anaesthetic induction. Here it was asked whether these pathways serve each hemisphere independently, or whether there is bilateral redundancy such that the MPTA on each side is capable of anaesthetizing the entire brain. Either of two GABAA‐R ligands were microinjected unilaterally into the MPTA in awake rats, the barbiturate modulator pentobarbital and the direct receptor agonist muscimol. Both agents, microinjected on either side, induced clinical anaesthesia, including bilateral atonia, bilateral analgesia and bilateral changes in cortical activity. The latter was monitored using c‐fos expression and electroencephalography. This action, however, was not simply a consequence of suppressing spike activity in MPTA neurons, as unilateral (or bilateral) microinjection of the local anaesthetic lidocaine at the same locus failed to induce anaesthesia. A model of the state‐switching circuitry that accounts for the bilateral action of unilateral microinjection and also for the observation that inactivation with lidocaine is not equivalent to inhibition with GABAA‐R agonists was proposed. This is a step in defining the overall switching circuitry that underlies anaesthesia.


The Journal of Neuroscience | 2017

Location of the Mesopontine Neurons Responsible for Maintenance of Anesthetic Loss of Consciousness

Anne Minert; Shai-Lee Yatziv; Marshall Devor

The transition from wakefulness to general anesthesia is widely attributed to suppressive actions of anesthetic molecules distributed by the systemic circulation to the cerebral cortex (for amnesia and loss of consciousness) and to the spinal cord (for atonia and antinociception). An alternative hypothesis proposes that anesthetics act on one or more brainstem or diencephalic nuclei, with suppression of cortex and spinal cord mediated by dedicated axonal pathways. Previously, we documented induction of an anesthesia-like state in rats by microinjection of small amounts of GABAA-receptor agonists into an upper brainstem region named the mesopontine tegmental anesthesia area (MPTA). Correspondingly, lesioning this area rendered animals resistant to systemically delivered anesthetics. Here, using rats of both sexes, we applied a modified microinjection method that permitted localization of the anesthetic-sensitive neurons with much improved spatial resolution. Microinjected at the MPTA hotspot identified, exposure of 1900 or fewer neurons to muscimol was sufficient to sustain whole-body general anesthesia; microinjection as little as 0.5 mm off-target did not. The GABAergic anesthetics pentobarbital and propofol were also effective. The GABA-sensitive cell cluster is centered on a tegmental (reticular) field traversed by fibers of the superior cerebellar peduncle. It has no specific nuclear designation and has not previously been implicated in brain-state transitions. SIGNIFICANCE STATEMENT General anesthesia permits pain-free surgery. Furthermore, because anesthetic agents have the unique ability to reversibly switch the brain from wakefulness to a state of unconsciousness, knowing how and where they work is a potential route to unraveling the neural mechanisms that underlie awareness itself. Using a novel method, we have located a small, and apparently one of a kind, cluster of neurons in the mesopontine tegmentum that are capable of effecting brain-state switching when exposed to GABAA-receptor agonists. This action appears to be mediated by a network of dedicated axonal pathways that project directly and/or indirectly to nearby arousal nuclei of the brainstem and to more distant targets in the forebrain and spinal cord.


Anesthesia & Analgesia | 2016

Mesopontine Switch for the Induction of General Anesthesia by Dedicated Neural Pathways.

Inna Sukhotinsky; Anne Minert; Peter Soja; Marshall Devor

We review evidence that the induction of anesthesia with GABAergic agents is mediated by a network of dedicated axonal pathways, which convey a suppressive signal to remote parts of the central nervous system. The putative signal originates in an anesthetic-sensitive locus in the brainstem that we refer to as the mesopontine tegmental anesthesia area (MPTA). This architecture stands in contrast to the classical notion that anesthetic molecules themselves directly mediate anesthetic induction after global distribution by the vascular circulation. The MPTA came to light in a systematic survey of the rat brain as a singular locus at which microinjection of minute quantities of GABAergic anesthetics is able to reversibly induce a state resembling surgical anesthesia. The rapid onset of anesthesia, the observed target specificity, and the fact that effective doses are far too small to survive dilution during vascular redistribution to distant areas in the central nervous system are all incompatible with the classical global suppression model. Lesioning the MPTA selectively reduces the animal’s sensitivity to systemically administered anesthetics. Taken together, the microinjection data show that it is sufficient to deliver &ggr;-aminobutyric acid A receptor (GABAA-R) agonists to the MPTA to induce an anesthesia-like state and the lesion data indicate that MPTA neurons are necessary for anesthetic induction by the systemic route at clinically relevant doses. Known connectivity of the MPTA provides a scaffold for defining the specific projection pathways that mediate each of the functional components of anesthesia. Because MPTA lesions do not induce coma, the MPTA is not a key arousal nucleus essential for maintaining the awake state. Rather, it appears be a “gatekeeper” of arousal function, a major element in a flip-flop switching mechanism that executes rapid and reversible transitions between the awake and the anesthetic state.

Collaboration


Dive into the Anne Minert's collaboration.

Top Co-Authors

Avatar

Marshall Devor

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Anne Pisanté

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Ariel Darvasi

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Jonathan Nissenbaum

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Michael Tal

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Benjamin Yakir

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Boris Yagen

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Dan Kaufmann

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Guy Meiri

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Hagai Y. Shpigler

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge