Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne P. Beigneux is active.

Publication


Featured researches published by Anne P. Beigneux.


Current Biology | 2007

ESCRT-III Dysfunction Causes Autophagosome Accumulation and Neurodegeneration

Jin-A Lee; Anne P. Beigneux; S. Tariq Ahmad; Stephen G. Young; Fen-Biao Gao

Defects in the endosomal-lysosomal pathway have been implicated in a number of neurodegenerative disorders. A key step in the endocytic regulation of transmembrane proteins occurs in a subset of late-endosomal compartments known as multivesicular bodies (MVBs), whose formation is controlled by endosomal sorting complex required for transport (ESCRT). The roles of ESCRT in dendritic maintenance and neurodegeneration remain unknown. Here, we show that mSnf7-2, a key component of ESCRT-III, is highly expressed in most mammalian neurons. Loss of mSnf7-2 in mature cortical neurons caused retraction of dendrites and neuronal cell loss. mSnf7-2 binds to CHMP2B, another ESCRT-III subunit, in which a rare dominant mutation is associated with frontotemporal dementia linked to chromosome 3 (FTD3). Ectopic expression of the mutant protein CHMP2B(Intron5) also caused dendritic retraction prior to neurodegeneration. CHMP2B(Intron5) was associated more avidly than CHMP2B(WT) with mSnf7-2, resulting in sequestration of mSnf7-2 in ubiquitin-positive late-endosomal vesicles in cortical neurons. Moreover, loss of mSnf7-2 or CHMP2B(Intron5) expression caused the accumulation of autophagosomes in cortical neurons and flies. These findings indicate that ESCRT-III dysfunction is associated with the autophagy pathway, suggesting a novel neurodegeneration mechanism that may have important implications for understanding FTD and other age-dependent neurodegenerative diseases.


Endocrinology | 2000

Up-Regulation of Peroxisome Proliferator-Activated Receptors (PPAR-α) and PPAR-γ Messenger Ribonucleic Acid Expression in the Liver in Murine Obesity: Troglitazone Induces Expression of PPAR-γ-Responsive Adipose Tissue-Specific Genes in the Liver of Obese Diabetic Mice1

Riaz A. Memon; Laurence H. Tecott; Katsunori Nonogaki; Anne P. Beigneux; Arthur H. Moser; Carl Grunfeld; Kenneth R. Feingold

Peroxisome proliferator-activated receptors (PPARs) are transcription factors that play an important role in the regulation of genes involved in lipid utilization and storage, lipoprotein metabolism, adipocyte differentiation, and insulin action. The three isoforms of the PPAR family, i.e. alpha, delta, and gamma, have distinct tissue distribution patterns. PPAR-alpha is predominantly present in the liver, and PPAR-gamma in adipose tissue, whereas PPAR-delta is ubiquitously expressed. A recent study reported increased PPAR-gamma messenger RNA (mRNA) expression in the liver in ob/ob mice; however, it is not known whether increased PPAR-gamma expression in the liver has any functional consequences. The expression of PPAR-alpha and -delta in the liver in obesity has not been determined. We have now examined the mRNA levels of PPAR-alpha, -delta, and -gamma in three murine models of obesity, namely, ob/ob (leptin-deficient), db/db (leptin-receptor deficient), and serotonin 5-HT2c receptor (5-HT2cR) mutant mice. 5-HT2cR mutant mice develop a late-onset obesity that is associated with higher plasma leptin levels. Our results show that PPAR-alpha mRNA levels in the liver are increased by 2- to 3-fold in all three obese models, whereas hepatic PPAR-gamma mRNA levels are increased by 7- to 9-fold in ob/ob and db/db mice and by 2-fold in obese 5-HT2cR mutant mice. PPAR-delta mRNA expression is not altered in ob/ob or db/db mice. To determine whether increased PPAR-gamma expression in the liver has any functional consequences, we examined the effect of troglitazone treatment on the hepatic mRNA levels of several PPAR-gamma-responsive adipose tissue-specific genes that have either no detectable or very low basal expression in the liver. The treatment of lean control mice with troglitazone significantly increased the expression of adipocyte fatty acid-binding protein (aP2) and fatty acid translocase (FAT/CD36) in the liver. This troglitazone-induced increase in the expression of aP2 and FAT/CD36 was markedly enhanced in the liver in ob/ob mice. Troglitazone also induced a pronounced increase in the expression of uncoupling protein-2 in the liver in ob/ob mice. In contrast to the liver, troglitazone did not increase the expression of aP2, FAT/CD36, and uncoupling protein-2 in adipose tissue in lean or ob/ob mice. Taken together, our results suggest that the effects of PPAR-gamma activators on lipid metabolism and energy homeostasis in obesity and type 2 diabetes may be partly mediated through their effects on PPAR-gamma in the liver.


Journal of Biological Chemistry | 2000

The Acute Phase Response Is Associated with Retinoid X Receptor Repression in Rodent Liver

Anne P. Beigneux; Arthur H. Moser; Judy K. Shigenaga; Carl Grunfeld; Kenneth R. Feingold

The acute phase response (APR) is associated with decreased hepatic expression of many proteins involved in lipid metabolism. The nuclear hormone receptors peroxisome proliferator-activated receptor α (PPARα) and liver X receptor (LXR) play key roles in regulation of hepatic lipid metabolism. Because heterodimerization with RXR is crucial for their action, we hypothesized that a decrease in RXR may be one mechanism to coordinately down-regulate gene expression during APR. We demonstrate that lipopolysaccharide (LPS) induces a rapid, dose-dependent decrease in RXRα, RXRβ, and RXRγ proteins in hamster liver. Maximum inhibition was observed at 4 h for RXRα (62%) and RXRβ (50%) and at 2 h for RXRγ (61%). These decreases were associated with a marked reduction in RXRα, RXRβ, and RXRγ mRNA levels. Increased RNA degradation is likely responsible for the repression of RXR, because LPS did not decreaseRXRβ and RXRγ transcription and only marginally inhibited (38%) RXRα transcription. RXR repression was associated with decreased LXRα and PPARα mRNA levels and reduced RXR·RXR, RXR·PPAR and RXR·LXR binding activities in nuclear extracts. Furthermore, LPS markedly decreased both basal and Wy-14,643-induced expression of acyl-CoA synthetase, a well characterized PPARα target. The reduction in hepatic RXR levels alone or in association with other nuclear hormone receptors could be a mechanism for coordinately inhibiting the expression of multiple genes during the APR.


Cell Metabolism | 2010

GPIHBP1 Is Responsible for the Entry of Lipoprotein Lipase into Capillaries

Brandon S. J. Davies; Anne P. Beigneux; Richard H. Barnes; Yiping Tu; Peter Gin; Michael M. Weinstein; Chika Nobumori; Rakel Nyrén; Ira J. Goldberg; André Bensadoun; Stephen G. Young; Loren G. Fong

The lipolytic processing of triglyceride-rich lipoproteins by lipoprotein lipase (LPL) is the central event in plasma lipid metabolism, providing lipids for storage in adipose tissue and fuel for vital organs such as the heart. LPL is synthesized and secreted by myocytes and adipocytes, but then finds its way into the lumen of capillaries, where it hydrolyzes lipoprotein triglycerides. The mechanism by which LPL reaches the lumen of capillaries has remained an unresolved problem of plasma lipid metabolism. Here, we show that GPIHBP1 is responsible for the transport of LPL into capillaries. In Gpihbp1-deficient mice, LPL is mislocalized to the interstitial spaces surrounding myocytes and adipocytes. Also, we show that GPIHBP1 is located at the basolateral surface of capillary endothelial cells and actively transports LPL across endothelial cells. Our experiments define the function of GPIHBP1 in triglyceride metabolism and provide a mechanism for the transport of LPL into capillaries.


Biochemical and Biophysical Research Communications | 2002

Reduction in cytochrome P-450 enzyme expression is associated with repression of CAR (constitutive androstane receptor) and PXR (pregnane X receptor)in mouse liver during the acute phase response

Anne P. Beigneux; Arthur H. Moser; Judy K. Shigenaga; Carl Grunfeld; Kenneth R. Feingold

Expression of P-450 (Cyp) enzymes is reduced in liver during the acute phase response, contributing to the decrease in bile acid levels and drug metabolism during infection. Nuclear hormone receptors CAR and PXR are key transactivators of Cyp2b and Cyp3a genes, respectively. Injection of bacterial lipopolysaccharide (LPS) induced the expected reduction in Cyp2b10 and Cyp3a mRNA levels in mouse liver. These decreases were associated with a marked reduction in CAR and PXR mRNA levels within 4 h following treatment. LPS-induced CAR and PXR repression were dose-dependent and sustained for at least 16 h. LPS treatment also reversed the up-regulation of Cyp3a in mice pre-treated with PXR ligand RU486. In addition, we observed a concomitant decrease in RXR (retinoid X receptor) mRNA levels, the obligatory partner of both CAR and PXR for high affinity binding to DNA. These findings represent one possible molecular mechanism underlying sepsis-induced repression of Cyp enzymes.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

Chylomicronemia With a Mutant GPIHBP1 (Q115P) That Cannot Bind Lipoprotein Lipase

Anne P. Beigneux; Remco Franssen; André Bensadoun; Peter Gin; Kristan Melford; Jorge Peter; Rosemary L. Walzem; Michael M. Weinstein; Brandon S. J. Davies; Jan Albert Kuivenhoven; John J. P. Kastelein; Loren G. Fong; Geesje M. Dallinga-Thie; Stephen G. Young

Objective—GPIHBP1 is an endothelial cell protein that binds lipoprotein lipase (LPL) and chylomicrons. Because GPIHBP1 deficiency causes chylomicronemia in mice, we sought to determine whether some cases of chylomicronemia in humans could be attributable to defective GPIHBP1 proteins. Methods and Results—Patients with severe hypertriglyceridemia (n=60, with plasma triglycerides above the 95th percentile for age and gender) were screened for mutations in GPIHBP1. A homozygous GPIHBP1 mutation (c.344A>C) that changed a highly conserved glutamine at residue 115 to a proline (p.Q115P) was identified in a 33-year-old male with lifelong chylomicronemia. The patient had failure-to-thrive as a child but had no history of pancreatitis. He had no mutations in LPL, APOA5, or APOC2. The Q115P substitution did not affect the ability of GPIHBP1 to reach the cell surface. However, unlike wild-type GPIHBP1, GPIHBP1-Q115P lacked the ability to bind LPL or chylomicrons (d < 1.006 g/mL lipoproteins from Gpihbp1−/− mice). Mouse GPIHBP1 with the corresponding mutation (Q114P) also could not bind LPL. Conclusions—A homozygous missense mutation in GPIHBP1 (Q115P) was identified in a patient with chylomicronemia. The mutation eliminated the ability of GPIHBP1 to bind LPL and chylomicrons, strongly suggesting that it caused the patient’s chylomicronemia.


Journal of Biological Chemistry | 2005

Disruption of the Phosphatidylserine Decarboxylase Gene in Mice Causes Embryonic Lethality and Mitochondrial Defects

Rineke Steenbergen; Terry S. Nanowski; Anne P. Beigneux; Agnes Kulinski; Stephen G. Young; Jean E. Vance

Most of the phosphatidylethanolamine (PE) in mammalian cells is synthesized by two pathways, the CDP-ethanolamine pathway and the phosphatidylserine (PS) decarboxylation pathway, the final steps of which operate at spatially distinct sites, the endoplasmic reticulum and mitochondria, respectively. We investigated the importance of the mitochondrial pathway for PE synthesis in mice by generating mice lacking PS decarboxylase activity. Disruption of Pisd in mice resulted in lethality between days 8 and 10 of embryonic development. Electron microscopy of Pisd-/- embryos revealed large numbers of aberrantly shaped mitochondria. In addition, fluorescence confocal microscopy of Pisd-/- embryonic fibroblasts showed fragmented mitochondria. PS decarboxylase activity and mRNA levels in Pisd+/- tissues were approximately one-half of those in wild-type mice. However, heterozygous mice appeared normal, exhibited normal vitality, and the phospholipid composition of livers, testes, brains, and of mitochondria isolated from livers, was the same as in wild-type littermates. The amount and activity of a key enzyme of the CDP-ethanolamine pathway for PE synthesis, CTP:phosphoethanolamine cytidylyltransferase, were increased by 35-40 and 100%, respectively, in tissues of Pisd+/- mice, as judged by immunoblotting; PE synthesis from [3H]ethanolamine was correspondingly increased in hepatocytes. We conclude that the CDP-ethanolamine pathway in mice cannot substitute for a lack of PS decarboxylase during development. Moreover, elimination of PE production in mitochondria causes fragmented, misshapen mitochondria, an abnormality that likely contributes to the embryonic lethality.


Journal of Clinical Investigation | 2004

Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf

Martin O. Bergo; Bryant J. Gavino; Christine Hong; Anne P. Beigneux; Martin McMahon; Patrick J. Casey; Stephen G. Young

Isoprenylcysteine carboxyl methyltransferase (Icmt) methylates the carboxyl-terminal isoprenylcysteine of CAAX proteins (e.g., Ras and Rho proteins). In the case of the Ras proteins, carboxyl methylation is important for targeting of the proteins to the plasma membrane. We hypothesized that a knockout of Icmt would reduce the ability of cells to be transformed by K-Ras. Fibroblasts harboring a floxed Icmt allele and expressing activated K-Ras (K-Ras-Icmt(flx/flx)) were treated with Cre-adenovirus, producing K-Ras-Icmt(Delta/Delta) fibroblasts. Inactivation of Icmt inhibited cell growth and K-Ras-induced oncogenic transformation, both in soft agar assays and in a nude mice model. The inactivation of Icmt did not affect growth factor-stimulated phosphorylation of Erk1/2 or Akt1. However, levels of RhoA were greatly reduced as a consequence of accelerated protein turnover. In addition, there was a large Ras/Erk1/2-dependent increase in p21(Cip1), which was probably a consequence of the reduced levels of RhoA. Deletion of p21(Cip1) restored the ability of K-Ras-Icmt(Delta/Delta) fibroblasts to grow in soft agar. The effect of inactivating Icmt was not limited to the inhibition of K-Ras-induced transformation: inactivation of Icmt blocked transformation by an oncogenic form of B-Raf (V599E). These studies identify Icmt as a potential target for reducing the growth of K-Ras- and B-Raf-induced malignancies.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA

Hea-Jin Jung; Catherine Coffinier; Youngshik Choe; Anne P. Beigneux; Brandon S. J. Davies; Shao H. Yang; Richard H. Barnes; Janet Hong; Tao Sun; Samuel J. Pleasure; Stephen G. Young; Loren G. Fong

Lamins A and C, alternatively spliced products of the LMNA gene, are key components of the nuclear lamina. The two isoforms are found in similar amounts in most tissues, but we observed an unexpected pattern of expression in the brain. Western blot and immunohistochemistry studies showed that lamin C is abundant in the mouse brain, whereas lamin A and its precursor prelamin A are restricted to endothelial cells and meningeal cells and are absent in neurons and glia. Prelamin A transcript levels were low in the brain, but this finding could not be explained by alternative splicing. In lamin A-only knockin mice, where alternative splicing is absent and all the output of the gene is channeled into prelamin A transcripts, large amounts of lamin A were found in peripheral tissues, but there was very little lamin A in the brain. Also, in knockin mice expressing exclusively progerin (a toxic form of prelamin A found in Hutchinson–Gilford progeria syndrome), the levels of progerin in the brain were extremely low. Further studies showed that prelamin A expression, but not lamin C expression, is down-regulated by a brain-specific microRNA, miR-9. Expression of miR-9 in cultured cells reduced lamin A expression, and this effect was abolished when the miR-9–binding site in the prelamin A 3′ UTR was mutated. The down-regulation of prelamin A expression in the brain could explain why mouse models of Hutchinson–Gilford progeria syndrome are free of central nervous system pathology.


Journal of Lipid Research | 2010

Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia

Ewa Ehrenborg; Henrik Semb; Elena Makoveichuk; Anna Lindberg; Michael R. Hayden; Peter Gin; Brandon S. J. Davies; Michael M. Weinstein; Loren G. Fong; Anne P. Beigneux; Stephen G. Young; Thomas Olivecrona; Olle Hernell

We investigated a family from northern Sweden in which three of four siblings have congenital chylomicronemia. LPL activity and mass in pre- and postheparin plasma were low, and LPL release into plasma after heparin injection was delayed. LPL activity and mass in adipose tissue biopsies appeared normal. [35S]Methionine incorporation studies on adipose tissue showed that newly synthesized LPL was normal in size and normally glycosylated. Breast milk from the affected female subjects contained normal to elevated LPL mass and activity levels. The milk had a lower than normal milk lipid content, and the fatty acid composition was compatible with the milk lipids being derived from de novo lipogenesis, rather than from the plasma lipoproteins. Given the delayed release of LPL into the plasma after heparin, we suspected that the chylomicronemia might be caused by mutations in GPIHBP1. Indeed, all three affected siblings were compound heterozygotes for missense mutations involving highly conserved cysteines in the Ly6 domain of GPIHBP1 (C65S and C68G). The mutant GPIHBP1 proteins reached the surface of transfected Chinese hamster ovary cells but were defective in their ability to bind LPL (as judged by both cell-based and cell-free LPL binding assays). Thus, the conserved cysteines in the Ly6 domain are crucial for GPIHBP1 function.

Collaboration


Dive into the Anne P. Beigneux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Loren G. Fong

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Gin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikael Larsson

University of California

View shared research outputs
Top Co-Authors

Avatar

Yiping Tu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Constance Voss

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge