Anne Poinsignon
Institut de recherche pour le développement
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Poinsignon.
PLOS ONE | 2008
Anne Poinsignon; Sylvie Cornelie; Montserrat Mestres-Simon; Alessandra Lanfrancotti; Marie-Noelle Rossignol; Denis Boulanger; Badara Cisse; Cheikh Sokhna; Bruno Arcà; Franck Remoue
Background In order to improve malaria control, and under the aegis of WHO recommendations, many efforts are being devoted to developing new tools for identifying geographic areas with high risk of parasite transmission. Evaluation of the human antibody response to arthropod salivary proteins could be an epidemiological indicator of exposure to vector bites, and therefore to risk of pathogen transmission. In the case of malaria, which is transmitted only by anopheline mosquitoes, maximal specificity could be achieved through identification of immunogenic proteins specific to the Anopheles genus. The objective of the present study was to determine whether the IgG response to the Anopheles gambiae gSG6 protein, from its recombinant form to derived synthetic peptides, could be an immunological marker of exposure specific to Anopheles gambiae bites. Methodology/Principal Findings Specific IgG antibodies to recombinant gSG6 protein were observed in children living in a Senegalese area exposed to malaria. With the objective of optimizing Anopheles specificity and reproducibility, we designed five gSG6-based peptide sequences using a bioinformatic approach, taking into consideration i) their potential antigenic properties and ii) the absence of cross-reactivity with protein sequences of other arthropods/organisms. The specific anti-peptide IgG antibody response was evaluated in exposed children. The five gSG6 peptides showed differing antigenic properties, with gSG6-P1 and gSG6-P2 exhibiting the highest antigenicity. However, a significant increase in the specific IgG response during the rainy season and a positive association between the IgG level and the level of exposure to Anopheles gambiae bites was significant only for gSG6-P1. Conclusions/Significance This step-by-step approach suggests that gSG6-P1 could be an optimal candidate marker for evaluating exposure to Anopheles gambiae bites. This marker could be employed as a geographic indicator, like remote sensing techniques, for mapping the risk of malaria. It could also represent a direct criterion of efficacy in evaluation of vector control strategies.
Malaria Journal | 2009
Anne Poinsignon; Sylvie Cornelie; Fatou Ba; Denis Boulanger; Cheikh Saya Sow; Marie-Noelle Rossignol; Cheikh Sokhna; Badara Cisse; François Simondon; Franck Remoue
BackgroundHuman populations exposed to low malaria transmission present particular severe risks of malaria morbidity and mortality. In addition, in a context of low-level exposure to Anopheles vector, conventional entomological methods used for sampling Anopheles populations are insufficiently sensitive and probably under-estimate the real risk of malaria transmission. The evaluation of antibody (Ab) responses to arthropod salivary proteins constitutes a novel tool for estimating exposure level to insect bites. In the case of malaria, a recent study has shown that human IgG responses to the gSG6-P1 peptide represented a specific biomarker of exposure to Anopheles gambiae bites. The objective of this study was to investigate if this biomarker can be used to estimate low-level exposure of individuals to Anopheles vector.MethodsThe IgG Ab level to gSG6-P1 was evaluated at the peak and at the end of the An. gambiae exposure season in children living in Senegalese villages, where the Anophele s density was estimated to be very low by classical entomological trapping but where malaria transmission occurred during the studied season.ResultsSpecific IgG responses to gSG6-P1 were observed in children exposed to very low-level of Anopheles bites. In addition, a significant increase in the specific IgG Ab level was observed during the Anopheles exposure season whereas classical entomological data have reported very few or no Anopheles during the studied period. Furthermore, this biomarker may also be applicable to evaluate the heterogeneity of individual exposure.ConclusionThe results strengthen the hypothesis that the evaluation of IgG responses to gSG6-P1 during the season of exposure could reflect the real human contact with anthropophilic Anopheles and suggest that this biomarker of low exposure could be used at the individual level. This promising immuno-epidemiological marker could represent a useful tool to assess the risk to very low exposure to malaria vectors as observed in seasonal, urban, altitude or travellers contexts. In addition, this biomarker could be used for the surveillance survey after applying anti-vector strategy.
American Journal of Tropical Medicine and Hygiene | 2010
Papa Makhtar Drame; Anne Poinsignon; Patrick Besnard; Jacques Le Mire; Maria Adelaide Dos-Santos; Cheikh Sow; Sylvie Cornelie; Vincent Foumane; Jean-Claude Toto; Mbacké Sembène; Denis Boulanger; Filomeno Fortes; Pierre Carnevale; Franck Remoue
For the fight against malaria, the World Health Organization (WHO) has emphasized the need for indicators to evaluate the efficacy of vector-control strategies. This study investigates a potential immunological marker, based on human antibody responses to Anopheles saliva, as a new indicator to evaluate the efficacy of insecticide-treated nets (ITNs). Parasitological, entomological, and immunological assessments were carried out in children and adults from a malaria-endemic region of Angola before and after the introduction of ITNs. Immunoglobulin G (IgG) levels to An. gambiae saliva were positively associated with the intensity of An. gambiae exposure and malaria infection. A significant decrease in the anti-saliva IgG response was observed after the introduction of ITNs, and this was associated with a drop in parasite load. This study represents the first stage in the development of a new indicator to evaluate the efficacy of malaria vector-control strategies, which could apply in other arthropod vector-borne diseases.
PLOS ONE | 2010
Papa Makhtar Drame; Anne Poinsignon; Patrick Besnard; Sylvie Cornelie; Jacques Le Mire; Jean Claude Toto; Vincent Foumane; Maria Adelaide Dos-Santos; Mbacké Sembène; Filomeno Fortes; Pierre Carnevale; Franck Remoue
To optimize malaria control, WHO has prioritised the need for new indicators to evaluate the efficacy of malaria vector control strategies. The gSG6-P1 peptide from gSG6 protein of Anopheles gambiae salivary glands was previously designed as a specific salivary sequence of malaria vector species. It was shown that the quantification of human antibody (Ab) responses to Anopheles salivary proteins in general and especially to the gSG6-P1 peptide was a pertinent biomarker of human exposure to Anopheles. The present objective was to validate this indicator in the evaluation of the efficacy of Insecticide Treated Nets (ITNs). A longitudinal evaluation, including parasitological, entomological and immunological assessments, was conducted on children and adults from a malaria-endemic area before and after the introduction of ITNs. Significant decrease of anti-gSG6-P1 IgG response was observed just after the efficient ITNs use. Interestingly, specific IgG Ab level was especially pertinent to evaluate a short-time period of ITNs efficacy and at individual level. However, specific IgG rose back up within four months as correct ITN use waned. IgG responses to one salivary peptide could constitute a reliable biomarker for the evaluation of ITN efficacy, at short- and long-term use, and provide a valuable tool in malaria vector control based on a real measurement of human-vector contact.
PLOS ONE | 2011
Cinzia Rizzo; Raffaele Ronca; Gabriella Fiorentino; Federica Verra; V. Mangano; Anne Poinsignon; Sodiomon B. Sirima; Issa Nebie; Fabrizio Lombardo; Franck Remoue; M. Coluzzi; Vincenzo Petrarca; David Modiano; Bruno Arcà
Salivary proteins injected by blood feeding arthropods into their hosts evoke a saliva-specific humoral response which can be useful to evaluate exposure to bites of disease vectors. However, saliva of hematophagous arthropods is a complex cocktail of bioactive factors and its use in immunoassays can be misleading because of potential cross-reactivity to other antigens. Toward the development of a serological marker of exposure to Afrotropical malaria vectors we expressed the Anopheles gambiae gSG6, a small anopheline-specific salivary protein, and we measured the anti-gSG6 IgG response in individuals from a malaria hyperendemic area of Burkina Faso, West Africa. The gSG6 protein was immunogenic and anti-gSG6 IgG levels and/or prevalence increased in exposed individuals during the malaria transmission/rainy season. Moreover, this response dropped during the intervening low transmission/dry season, suggesting it is sensitive enough to detect variation in vector density. Members of the Fulani ethnic group showed higher anti-gSG6 IgG response as compared to Mossi, a result consistent with the stronger immune reactivity reported in this group. Remarkably, anti-gSG6 IgG levels among responders were high in children and gradually declined with age. This unusual pattern, opposite to the one observed with Plasmodium antigens, is compatible with a progressive desensitization to mosquito saliva and may be linked to the continued exposure to bites of anopheline mosquitoes. Overall, the humoral anti-gSG6 IgG response appears a reliable serological indicator of exposure to bites of the main African malaria vectors (An. gambiae, Anopheles arabiensis and, possibly, Anopheles funestus) and it may be exploited for malaria epidemiological studies, development of risk maps and evaluation of anti-vector measures. In addition, the gSG6 protein may represent a powerful model system to get a deeper understanding of molecular and cellular mechanisms underlying the immune tolerance and progressive desensitization to insect salivary allergens.
Tropical Medicine & International Health | 2010
Anne Poinsignon; Badara Samb; Souleymane Doucoure; Papa-Makhtar Drame; Jean Biram Sarr; Cheikh Sow; Sylvie Cornelie; Sophie Maiga; Cheikh Thiam; François Rogerie; Sohidou Guindo; Emmanuel Hermann; Ibrahima Dia; Gilles Riveau; Lassana Konate; Franck Remoue
Objective The development of a biomarker of exposure based on the evaluation of the human antibody response specific to Anopheles salivary proteins seems promising in improving malaria control. The IgG response specific to the gSG6‐P1 peptide has already been validated as a biomarker of An. gambiae exposure. This study represents a first attempt to validate the gSG6‐P1 peptide as an epidemiological tool evaluating exposure to An. funestus bites, the second main malaria vector in sub‐Saharan Africa.
Malaria Journal | 2010
Elena Ambrosino; Chloé Dumoulin; Eve Orlandi-Pradines; Franck Remoue; Aissatou Toure-Balde; Adama Tall; Jean Biram Sarr; Anne Poinsignon; Cheikh Sokhna; Karine Puget; Jean-François Trape; Aurélie Pascual; Pierre Druilhe; Thierry Fusai; Christophe Rogier
BackgroundAssessment exposure and immunity to malaria is an important step in the fight against the disease. Increased malaria infection in non-immune travellers under anti-malarial chemoprophylaxis, as well as the implementation of malaria elimination programmes in endemic countries, raises new issues that pertain to these processes. Notably, monitoring malaria immunity has become more difficult in individuals showing low antibody (Ab) responses or taking medications against the Plasmodiumfalciparum blood stages. Commonly available techniques in malaria seroepidemiology have limited sensitivity, both against pre-erythrocytic, as against blood stages of the parasite. Thus, the aim of this study was to develop a sensitive tool to assess the exposure to malaria or to bites from the vector Anopheles gambiae, despite anti-malarial prophylactic treatment.MethodsAb responses to 13 pre-erythrocytic P. falciparum-specific peptides derived from the proteins Lsa1, Lsa3, Glurp, Salsa, Trap, Starp, CSP and Pf11.1, and to 2 peptides specific for the Anopheles gambiae saliva protein gSG6 were tested. In this study, 253 individuals from three Senegalese areas with different transmission intensities and 124 European travellers exposed to malaria during a short period of time were included.ResultsThe multiplex assay was optimized for most but not all of the antigens. It was rapid, reproducible and required a small volume of serum. Proportions of Ab-positive individuals, Ab levels and the mean number of antigens (Ags) recognized by each individual increased significantly with increases in the level of malaria exposure.ConclusionThe multiplex assay developed here provides a useful tool to evaluate immune responses to multiple Ags in large populations, even when only small amounts of serum are available, or Ab titres are low, as in case of travellers. Finally, the relationship of Ab responses with malaria endemicity levels provides a way to monitor exposure in differentially exposed autochthonous individuals from various endemicity areas, as well as in travellers who are not immune, thus indirectly assessing the parasite transmission and malaria risk in the new eradication era.
Malaria Journal | 2012
Papa Makhtar Drame; Vanessa Machault; Abdoulaye Diallo; Sylvie Cornelie; Anne Poinsignon; Richard Lalou; Mbacké Sembène; Stéphanie Dos Santos; Christophe Rogier; Frédéric Pagès; Jean-Yves Le Hesran; Franck Remoue
BackgroundUrban malaria can be a serious public health problem in Africa. Human-landing catches of mosquitoes, a standard entomological method to assess human exposure to malaria vector bites, can lack sensitivity in areas where exposure is low. A simple and highly sensitive tool could be a complementary indicator for evaluating malaria exposure in such epidemiological contexts. The human antibody response to the specific Anopheles gSG6-P1 salivary peptide have been described as an adequate tool biomarker for a reliable assessment of human exposure level to Anopheles bites. The aim of this study was to use this biomarker to evaluate the human exposure to Anopheles mosquito bites in urban settings of Dakar (Senegal), one of the largest cities in West Africa, where Anopheles biting rates and malaria transmission are supposed to be low.MethodsOne cross-sectional study concerning 1,010 (505 households) children (n = 505) and adults (n = 505) living in 16 districts of downtown Dakar and its suburbs was performed from October to December 2008. The IgG responses to gSG6-P1 peptide have been assessed and compared to entomological data obtained in or near the same district.ResultsConsiderable individual variations in anti-gSG6-P1 IgG levels were observed between and within districts. In spite of this individual heterogeneity, the median level of specific IgG and the percentage of immune responders differed significantly between districts. A positive and significant association was observed between the exposure levels to Anopheles gambiae bites, estimated by classical entomological methods, and the median IgG levels or the percentage of immune responders measuring the contact between human populations and Anopheles mosquitoes. Interestingly, immunological parameters seemed to better discriminate the exposure level to Anopheles bites between different exposure groups of districts.ConclusionsSpecific human IgG responses to gSG6-P1 peptide biomarker represent, at the population and individual levels, a credible new alternative tool to assess accurately the heterogeneity of exposure level to Anopheles bites and malaria risk in low urban transmission areas. The development of such biomarker tool would be particularly relevant for mapping and monitoring malaria risk and for measuring the efficiency of vector control strategies in these specific settings.
Parasites & Vectors | 2013
André Sagna; Jean Biram Sarr; Lobna Gaayeb; Papa Makhtar Drame; Mamadou Ousmane Ndiath; Simon Senghor; Cheikh Sow; Anne Poinsignon; Modou Seck; Emmanuel Hermann; Anne-Marie Schacht; Ngor Faye; Cheikh Sokhna; Franck Remoue; Gilles Riveau
BackgroundOver the past decade, a sharp decline of malaria burden has been observed in several countries. Consequently, the conventional entomological methods have become insufficiently sensitive and probably under-estimate micro-geographical heterogeneity of exposure and subsequent risk of malaria transmission. In this study, we investigated whether the human antibody (Ab) response to Anopheles salivary gSG6-P1 peptide, known as a biomarker of Anopheles exposure, could be a sensitive and reliable tool for discriminating human exposure to Anopheles bites in area of low and seasonal malaria transmission.MethodsA multi-disciplinary survey was performed in Northern Senegal where An. gambiae s.l. is the main malaria vector. Human IgG Ab response to gSG6-P1 salivary peptide was compared according to the season and villages in children from five villages in the middle Senegal River valley, known as a low malaria transmission area.ResultsIgG levels to gSG6-P1 varied considerably according to the villages, discriminating the heterogeneity of Anopheles exposure between villages. Significant increase of IgG levels to gSG6-P1 was observed during the peak of exposure to Anopheles bites, and decreased immediately after the end of the exposure season. In addition, differences in the season-dependent specific IgG levels between villages were observed after the implementation of Long-Lasting Insecticidal Nets by The National Malaria Control Program in this area.ConclusionThe gSG6-P1 salivary peptide seems to be a reliable tool to discriminate the micro-geographical heterogeneity of human exposure to Anopheles bites in areas of very low and seasonal malaria transmission. A biomarker such as this could also be used to monitor and evaluate the possible heterogeneous effectiveness of operational vector control programs in low-exposure areas.
PLOS ONE | 2013
Papa Makhtar Drame; Abdoulaye Baniré Diallo; Anne Poinsignon; Olayidé Boussari; Stéphanie Dos Santos; Vanessa Machault; Richard Lalou; Sylvie Cornelie; Jean-Yves LeHesran; Franck Remoue
Standard entomological methods for evaluating the impact of vector control lack sensitivity in low-malaria-risk areas. The detection of human IgG specific to Anopheles gSG6-P1 salivary antigen reflects a direct measure of human–vector contact. This study aimed to assess the effectiveness of a range of vector control measures (VCMs) in urban settings by using this biomarker approach. The study was conducted from October to December 2008 on 2,774 residents of 45 districts of urban Dakar. IgG responses to gSG6-P1 and the use of malaria VCMs highly varied between districts. At the district level, specific IgG levels significantly increased with age and decreased with season and with VCM use. The use of insecticide-treated nets, by drastically reducing specific IgG levels, was by far the most efficient VCM regardless of age, season or exposure level to mosquito bites. The use of spray bombs was also associated with a significant reduction of specific IgG levels, whereas the use of mosquito coils or electric fans/air conditioning did not show a significant effect. Human IgG response to gSG6-P1 as biomarker of vector exposure represents a reliable alternative for accurately assessing the effectiveness of malaria VCM in low-malaria-risk areas. This biomarker tool could be especially relevant for malaria control monitoring and surveillance programmes in low-exposure/low-transmission settings.