Anne Postec
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Postec.
International Journal of Systematic and Evolutionary Microbiology | 2012
Wajdi Ben Hania; Ramzi Godbane; Anne Postec; Moktar Hamdi; Bernard Ollivier; Marie Laure Fardeau
Strain SulfLac1(T), a thermophilic, anaerobic and slightly halophilic, rod-shaped bacterium with a sheath-like outer structure (toga), was isolated from a whey digester in Tunisia. The strains non-motile cells measured 3-30×1 µm and appeared singly, in pairs or as long chains. The novel strain reduced thiosulfate and elemental sulfur, but not sulfate or sulfite, into sulfide. It grew at 37-65 °C (optimum 55 °C), at pH 6.5-7.9 (optimum pH 6.9) and with 0.2-3 % (w/v) NaCl (optimum 0.5 %). The G+C content of the strains genomic DNA was 33.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SulfLac1(T) was most closely related to Petrotoga mobilis (91.4 % sequence similarity). Based on phenotypic, phylogenetic and chemotaxonomic evidence, strain SulfLac1(T) represents a novel species of a new genus within the order Thermotogales, for which the name Defluviitoga tunisiensis gen. nov., sp. nov. is proposed. The type strain of the type species is SulfLac1(T) ( = DSM 23805(T) = JCM 17210(T)).
Microbial Ecology | 2012
Anne Postec; Nicolas Tapia; Alain Bernadac; Manon Joseph; Sylvain Davidson; Long-Fei Wu; Bernard Ollivier; Nathalie Pradel
Magnetotactic bacteria (MTB) mineralize nanosized magnetite or greigite crystals within cells and thus play an important role in the biogeochemical process. Despite decades of research, knowledge of MTB distribution and ecology, notably in areas subjected to oil industry activities, is still limited. In the present study, we investigated the presence of MTB in the Gulf of Fos, French Mediterranean coast, which is subjected to intensive oil industry activities. Microcosms containing sediments/water (1:2, v/v) from several sampling sites were monitored over several weeks. The presence of MTB was revealed in five of eight sites. Diverse and numerous MTB were revealed particularly from one site (named CAR), whilst temporal variations of a homogenous magnetotactic cocci population was shown within the LAV site microcosm over a 4-month period. Phylogenetic analysis revealed that they belonged to Alphaproteobacteria, and a novel genus from the LAV site was evidenced. Among the physicochemical parameters measured, a correlation was shown between the variation of MTB abundance in microcosms and the redox state of sulphur compounds.
International Journal of Systematic and Evolutionary Microbiology | 2010
Karine Alain; Anne Postec; Elodie Grinsard; Françoise Lesongeur; Daniel Prieur; Anne Godfroy
A novel, strictly anaerobic, thermophilic, sulfate-reducing bacterium, designated strain AT1325(T), was isolated from a deep-sea hydrothermal vent at the Rainbow site on the Mid-Atlantic Ridge. This strain was subjected to a polyphasic taxonomic analysis. Cells were Gram-negative motile rods (approximately 2.4 x 0.6 microm) with a single polar flagellum. Strain AT1325(T) grew at 55-75 degrees C (optimum, 65-70 degrees C), at pH 5.5-8.0 (optimum, 6.5-7.5) and in the presence of 1.5-4.5 % (w/v) NaCl (optimum, 2.5 %). Cells grew chemolithoautotrophically with H2 as an energy source and SO4(2-) as an electron acceptor. Alternatively, the novel isolate was able to use methylamine, peptone or yeast extract as carbon sources. The dominant fatty acids (>5 % of the total) were C(16 : 0), C(18 : 1)omega7c, C(18 : 0) and C(19 : 0) cyclo omega8c. The G+C content of the genomic DNA of strain AT1325(T) was 45.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences placed strain AT1325(T) within the family Thermodesulfobacteriaceae, in the bacterial domain. Comparative 16S rRNA gene sequence analysis indicated that strain AT1325(T) belonged to the genus Thermodesulfatator, sharing 97.8 % similarity with the type strain of Thermodesulfatator indicus, the unique representative species of this genus. On the basis of the data presented, it is suggested that strain AT1325(T) represents a novel species of the genus Thermodesulfatator, for which the name Thermodesulfatator atlanticus sp. nov. is proposed. The type strain is AT1325(T) (=DSM 21156(T)=JCM 15391(T)).
Environmental Microbiology Reports | 2014
Marianne Quéméneur; Méline Bes; Anne Postec; Nan Mei; Jérôme Hamelin; Christophe Monnin; Valérie Chavagnac; Claude Payri; Bernard Pelletier; Linda Guentas-Dombrowsky; Martine Gérard; Céline Pisapia; Emmanuelle Gérard; Bénédicte Ménez; Bernard Ollivier; Gaël Erauso
The shallow submarine hydrothermal field of the Prony Bay (New Caledonia) discharges hydrogen- and methane-rich fluids with low salinity, temperature (< 40°C) and high pH (11) produced by the serpentinization reactions of the ultramafic basement into the lagoon seawater. They are responsible for the formation of carbonate chimneys at the lagoon seafloor. Capillary electrophoresis single-strand conformation polymorphism fingerprinting, quantitative polymerase chain reaction and sequence analysis of 16S rRNA genes revealed changes in microbial community structure, abundance and diversity depending on the location, water depth, and structure of the carbonate chimneys. The low archaeal diversity was dominated by few uncultured Methanosarcinales similar to those found in other serpentinization-driven submarine and subterrestrial ecosystems (e.g. Lost City, The Cedars). The most abundant and diverse bacterial communities were mainly composed of Chloroflexi, Deinococcus-Thermus, Firmicutes and Proteobacteria. Functional gene analysis revealed similar abundance and diversity of both Methanosarcinales methanoarchaea, and Desulfovibrionales and Desulfobacterales sulfate-reducers in the studied sites. Molecular studies suggest that redox reactions involving hydrogen, methane and sulfur compounds (e.g. sulfate) are the energy driving forces of the microbial communities inhabiting the Prony hydrothermal system.
Frontiers in Microbiology | 2015
Anne Postec; Marianne Quéméneur; Méline Bes; Nan Mei; Fatma Benaïssa; Claude Payri; Bernard Pelletier; Christophe Monnin; Linda Guentas-Dombrowsky; Bernard Ollivier; Emmanuelle Gérard; Céline Pisapia; Martine Gérard; Bénédicte Ménez; Gaël Erauso
Active carbonate chimneys from the shallow marine serpentinizing Prony Hydrothermal Field were sampled 3 times over a 6 years period at site ST09. Archaeal and bacterial communities composition was investigated using PCR-based methods (clone libraries, Denaturating Gel Gradient Electrophoresis, quantitative PCR) targeting 16S rRNA genes, methyl coenzyme M reductase A and dissimilatory sulfite reductase subunit B genes. Methanosarcinales (Euryarchaeota) and Thaumarchaea were the main archaeal members. The Methanosarcinales, also observed by epifluorescent microscopy and FISH, consisted of two phylotypes that were previously solely detected in two other serpentinitzing ecosystems (The Cedars and Lost City Hydrothermal Field). Surprisingly, members of the hyperthermophilic order Thermococcales were also found which may indicate the presence of a hot subsurface biosphere. The bacterial community mainly consisted of Firmicutes, Chloroflexi, Alpha-, Gamma-, Beta-, and Delta-proteobacteria and of the candidate division NPL-UPA2. Members of these taxa were consistently found each year and may therefore represent a stable core of the indigenous bacterial community of the PHF chimneys. Firmicutes isolates representing new bacterial taxa were obtained by cultivation under anaerobic conditions. Our study revealed diverse microbial communities in PHF ST09 related to methane and sulfur compounds that share common populations with other terrestrial or submarine serpentinizing ecosystems.
International Journal of Systematic and Evolutionary Microbiology | 2014
F. Ben Aissa; Anne Postec; Gaël Erauso; Claude Payri; Bernard Pelletier; Moktar Hamdi; Bernard Ollivier; Marie-Laure Fardeau
A novel thermotolerant, anaerobic, Gram-stain-positive, spore-forming bacterium was isolated from a hydrothermal chimney in Prony Bay, New Caledonia. This strain, designated FatNI3(T), grew at 15-55 °C (optimum 30 °C) and at pH 5.8-8.9 (optimum 7.7). It was slightly halophilic, requiring at least 0.5 % NaCl for growth (optimum 2.5-3.0 %), and was able to grow at up to 6 % NaCl. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and nitrite were not used as terminal electron acceptors. Growth of strain FatNI3(T) was inhibited in the presence of sulfite (2 mM) or nitrite (2 mM). Strain FatNI3(T) fermented cellobiose, glucose, mannose, maltose, sucrose, galactose, lactose, ribose, fructose, rhamnose, raffinose, xylose, yeast extract, peptone and biotrypticase. The main fermentation products from glucose metabolism were acetate, ethanol, H2 and CO2. The predominant cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The main polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, and unknown glycolipids and phospholipids. The G+C content of the genomic DNA was 36.6 mol%. On the basis of phylogenetic and physiological properties, strain FatNI3(T) ( = DSM 25904 = JCM 18391) belonging to the phylum Firmicutes, class Clostridia, order Clostridiales, is proposed as the type strain of a novel species of the genus Vallitalea, for which the name Vallitalea pronyensis sp. nov. is proposed.
International Journal of Systematic and Evolutionary Microbiology | 2015
Olfa Hamdi; Wajdi Ben Hania; Anne Postec; Hassib Bouallagui; Moktar Hamdi; Patricia Bonin; Bernard Ollivier; Marie-Laure Fardeau
A new Gram-staining-positive, non-sporulating, mesophilic, amino acid-degrading anaerobic bacterium, designated strain OTA 102(T), was isolated from an anaerobic sequencing batch reactor treating wastewater from cooking tuna. The cells were curved rods (0.6-2.5×0.5 µm) and occurred singly or in pairs. The strain was motile by means of one lateral flagellum. Strain OTA 102(T) grew at temperatures between 30 and 45 °C (optimum 40 °C), between pH 6.0 and 8.4 (optimum pH 7.2) and NaCl concentrations between 1 and 5 % (optimum 2 %, w/v). Strain OTA 102(T) required yeast extract for growth. Serine, threonine, glycine, cysteine, citrate, fumarate, α-ketoglutarate and pyruvate were fermented. When co-cultured with Methanobacterium formicicum as the hydrogen scavenger, strain OTA 102(T) oxidized alanine, valine, leucine, isoleucine, aspartate, tyrosine, methionine, histidine and asparagine. The genomic DNA G+C content of strain OTA 102(T) was 41.7 mol%. The main fatty acid was iso-C15 : 0. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain OTA 102(T) was related to Aminobacterium colombiense and Aminobacterium mobile (95.5 and 95.2 % similarity, respectively), of the phylum Synergistetes. On the basis of phylogenetic, genetic and physiological characteristics, strain OTA 102(T) is proposed to represent a novel species of the genus Aminobacterium, Aminobacterium thunnarium sp. nov. The type strain is OTA 102(T) ( = DSM 27500(T) = JCM 19320(T)).
International Journal of Systematic and Evolutionary Microbiology | 2012
W. Ben Hania; Fraj B; Anne Postec; Khaled Fadhlaoui; Moktar Hamdi; Bernard Ollivier; M-Laure. Fardeau
Strain BELH1(T), a novel mesophilic, anaerobic, halotolerant, rod-shaped bacterium, was isolated from a Tunisian wastewater digester. The cells of the strain are motile, measure 0.5×2-5 µm, and occur singly or in pairs. The strain reduced thiosulfate and elemental sulfur (but not sulfate or sulfite) into sulfide. It grew at 15-40 °C (optimum 30 °C), pH 5.8-8.4 (optimum 7) and with 0-10 % (w/v) NaCl (optimum 3.0 %). The genomic DNA G+C content of strain BELH1(T) was 38.2 mol% and the strains predominant cellular fatty acids were C(14:0), a summed feature that contained iso-C(17:1) and/or anteiso-C(17:1) B, and C(16:0). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel strain was most closely related to Fusibacter paucivorans (94.8 % sequence similarity). Based on phenotypic, phylogenetic and taxonomic characteristics, strain BELH1(T) represents a novel species of the genus Fusibacter, for which the name Fusibacter tunisiensis sp. nov. is proposed. The type strain is BELH1(T) ( = DSM 24436(T) = JCM 17481(T)).
International Journal of Systematic and Evolutionary Microbiology | 2015
Méline Bes; Mériem Merrouch; Manon Joseph; Marianne Quéméneur; Claude Payri; Bernard Pelletier; Bernard Ollivier; Marie-Laure Fardeau; Gaël Erauso; Anne Postec
A novel anaerobic bacterial strain, ST07-YET, was isolated from a carbonate chimney of the Prony Hydrothermal Field (PHF) in New Caledonia. Cells were Gram-stain-positive, straight rods (0.7-0.8 × 3.0-5.0 μm) and motile by means of lateral flagella. Strain ST07-YET was mesophilic (optimum 35 °C), moderately alkaliphilic and halotolerant (optimum pH 8.7 and 5 g l- 1 NaCl). Elemental sulfur, sulfate, thiosulfate, sulfite, nitrate and nitrite were not used as terminal electron acceptors. Yeast extract, peptone, tryptone, Casamino acids, crotonate, pyruvate, galactose, maltose, sucrose, ribose, trehalose and glucose were used as carbon sources. Glucose fermentation led to acetate, H2 and CO2 formation. Arginine, serine, histidine, lysine, methionine and cysteine improved growth, but the Stickland reaction was negative for the combinations of amino acids tested. The major metabolic products from yeast extract fermentation were H2, CO2, acetate, butyrate, isobutyrate, isovalerate and propionate. The predominant cellular fatty acids were C16 : 0, C16 : 1cis9, C14 : 0 and C16 : 1cis7 (>5 % of total fatty acids). The G+C content of the genomic DNA was 32.9 mol%. Phylogenetic analysis revealed that strain ST07-YET was most closely related to Clostridium sticklandii DSM 519T and Acetoanaerobium noterae NOT-3T (96.7 % and 96.8 % 16S rRNA gene sequence similarity, respectively). On the basis of phylogenetic, chemotaxonomic and physiological properties, strain ST07-YET is proposed to represent a novel species of the genus Acetoanaerobium (order Clostridiales, phylum Firmicutes) with the name Acetoanaerobium pronyense sp. nov. The type strain is ST07-YET ( = DSM 27512T = JCM 19400T).
Archive | 2014
Martina Cappelletti; Davide Zannoni; Anne Postec; Bernard Ollivier
Members of the deep-branching order Thermotogales are widespread in various terrestrial, submarine and subterrestrial extreme environments. This bacterial order included both thermophilic and hyperthermophilic anaerobic microorganisms so far pertaining to ten genera. It is only recently (2011) that cultivation of a mesophilic member of this order belonging to a novel genus, Mesotoga, has been successful. All members, with the exception of Mesotoga spp., are recognized as high hydrogen producers having possible applications in biotechnology with a peculiar emphasis for members of the genus Thermotoga (e.g. T. maritima and T. neapolitana). The ecology, phylogeny and metabolism linked to hydrogen production of these bacteria, are reviewed.