Anne Rix
RWTH Aachen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Rix.
Investigative Radiology | 2013
Stanley Fokong; Ana Fragoso; Anne Rix; Adelina Curaj; Zhuojun Wu; Wiltrud Lederle; Olga Iranzo; Jessica Gätjens; Fabian Kiessling; Moritz Palmowski
ObjectivesThe purposes of this study were the development and preclinical evaluation of clinically translatable E-selectin–specific ultrasound contrast agents based on a peptide ligand with the recognition sequence IELLQAR. Materials and MethodsThe E-selectin–specific peptide was synthesized through solid phase peptide synthesis and covalently attached to poly n-butylcyanoacrylate–stabilized microbubbles with an air core. Quantification of the microbubble surface coverage with peptides was performed through flow cytometry. Targeted adhesion of peptide-coated microbubbles was investigated in vitro using parallel plate flow chamber assays on tumor necrosis factor-&agr;–stimulated human umbilical vein endothelial cells. In vivo imaging was performed in nude mice bearing human ovarian carcinoma xenografts (MLS), followed by ex vivo immunohistochemistry validation of E-selectin expression. ResultsSuccess of peptide synthesis was validated through preparative reverse phase high-pressure liquid chromatography and electronspray ionization-mass spectrometry. Results of the flow cytometry revealed approximately 4000 E-selectin–specific peptides/microbubble surface. Results of the in vitro experiments demonstrated the specificity of peptide-coated microbubbles to E-selectin (1.10 ± 0.48 vs 0.19 ± 0.09 bound microbubbles per cell, before and after competition respectively; P < 0.01). The in vivo imaging enabled specific assessment of E-selectin expression in MLS carcinoma xenografts (5.21 ± 3.41 vs 1.37 ± 0.67 contrast intensity before and after competition, respectively; P < 0.05). ConclusionsClinically translatable microbubbles that were covalently coupled to the short E-selectin–specific peptide (IELLQAR) enabled specific imaging of the E-selectin expression in tumor vessels in vivo.
EJNMMI research | 2011
Wiltrud Lederle; Susanne Arns; Anne Rix; Felix Gremse; Dennis Doleschel; Joern Schmaljohann; Felix M. Mottaghy; Fabian Kiessling; Moritz Palmowski
BackgroundMolecular apoptosis imaging is frequently discussed to be useful for monitoring cancer therapy. We demonstrate that the sole assessment of therapy effects by apoptosis imaging can be misleading, depending on the therapy effect on the tumor vasculature.MethodsApoptosis was investigated by determining the uptake of Annexin Vivo by optical imaging (study part I) and of 99 mTc-6-hydrazinonicotinic [HYNIC]-radiolabeled Annexin V by gamma counting (study part II) in subcutaneous epidermoid carcinoma xenografts (A431) in nude mice after antiangiogenic treatment (SU11248). Optical imaging was performed by optical tomography (3D) and 2D reflectance imaging (control, n = 7; therapy, n = 6). Accumulation of the radioactive tracer was determined ex vivo (control, n = 5; therapy, n = 6). Tumor vascularization was investigated with an optical blood pool marker (study part I) and contrast-enhanced ultrasound (both studies). Data were validated by immunohistology.ResultsA significantly higher apoptosis rate was detected in treated tumors by immunohistological terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining (area fraction: control, 0.023 ± 0.015%; therapy, 0.387 ± 0.105%; P < 0.001). However, both 2D reflectance imaging using Annexin Vivo (control, 13 ± 15 FI/cm2; therapy, 11 ± 7 FI/cm2) and gamma counting using 99 mTc-HYNIC-Annexin V (tumor-to-muscle ratio control, 5.66 ± 1.46; therapy, 6.09 ± 1.40) failed in showing higher accumulation in treated tumors. Optical tomography even indicated higher probe accumulation in controls (control, 81.3 ± 73.7 pmol/cm3; therapy, 27.5 ± 34.7 pmol/cm3). Vascularization was strongly reduced after therapy, demonstrated by contrast-enhanced ultrasound, optical imaging, and immunohistology.ConclusionsThe failure of annexin-based apoptosis assessment in vivo can be explained by the significant breakdown of the vasculature after therapy, resulting in reduced probe/tracer delivery. This favors annexin-based apoptosis imaging only in therapies that do not severely interfere with the vasculature.
Radiology | 2013
Christoph Grouls; Maximillian Hatting; Anne Rix; Sibylle Pochon; Wiltrud Lederle; Isabelle Tardy; Christiane K. Kuhl; Christian Trautwein; Fabian Kiessling; Moritz Palmowski
PURPOSE To investigate the ability of vascular endothelial growth factor receptor type 2 (VEGFR2)-targeted ultrasonographic (US) microbubbles for the assessment of liver dysplasia in transgenic mice. MATERIALS AND METHODS Animal experiments were approved by the governmental review committee. Nuclear factor-κB essential modulator knock-out mice with liver dysplasia and wild-type mice underwent liver imaging by using a clinical US system. Two types of contrast agents were investigated: nontargeted, commercially available, second-generation microbubbles (SonoVue) and clinically translatable PEGylated VEGFR2-targeted microbubbles (BR55). Microbubble kinetics was investigated over the course of 4 minutes. Targeted contrast material-enhanced US signal was quantified 5 minutes after injection. Competitive in vivo binding experiments with BR55 were performed in knock-out mice. Immunohistochemical and hematoxylin-eosin staining of liver sections was performed to validate the in vivo US results. Groups were compared by using the Mann-Whitney test. RESULTS Peak enhancement after injection of SonoVue and BR55 did not differ in healthy and dysplastic livers (SonoVue, P = .46; BR55, P = .43). Accordingly, immunohistochemical findings revealed comparable vessel densities in both groups. The specificity of BR55 to VEGFR2 was proved by in vivo competition (P = .0262). While the SonoVue signal decreased similarly in healthy and dysplastic livers during the 4 minutes, there was an accumulation of BR55 in dysplastic livers compared with healthy ones. Furthermore, targeted contrast-enhanced US signal indicated a significantly higher site-specific binding of BR55 in dysplastic than healthy livers (P = .005). Quantitative immunohistologic findings confirmed significantly higher VEGFR2 levels in dysplastic livers (P = .02). CONCLUSION BR55 enables the distinction of early stages of liver dysplasia from normal liver.
European Journal of Radiology | 2012
Anne Rix; Wiltrud Lederle; Monica Siepmann; Stanley Fokong; Florian F. Behrendt; Jessica Bzyl; Christoph Grouls; Fabian Kiessling; Moritz Palmowski
PURPOSE To compare non-enhanced and contrast-enhanced high-frequency 3D Doppler ultrasound with contrast-enhanced 2D and 3D B-mode imaging for assessing tumor vascularity during antiangiogenic treatment using soft-shell and hard-shell microbubbles. MATERIALS AND METHODS Antiangiogenic therapy effects (SU11248) on vascularity of subcutaneous epidermoid-carcinoma xenografts (A431) in female CD1 nude mice were investigated longitudinally using non-enhanced and contrast-enhanced 3D Doppler at 25 MHz. Additionally, contrast-enhanced 2D and 3D B-mode scans were performed by injecting hard-shell (poly-butyl-cyanoacrylate-based) and soft-shell (phospholipid-based) microbubbles. Suitability of both contrast agents for high frequency imaging and the sensitivity of the different ultrasound methods to assess early antiangiogenic therapy effects were investigated. Ultrasound data were validated by immunohistology. RESULTS Hard-shell microbubbles induced higher signal intensity changes in tumors than soft-shell microbubbles in 2D B-mode measurements (424 ± 7 vs. 169 ± 8 A.U.; p<0.01). In 3D measurements, signals of soft-shell microbubbles were hardly above the background (5.48 ± 4.57 vs. 3.86 ± 2.92 A.U.), while signals from hard-shell microbubbles were sufficiently high (30.5 ± 8.06 A.U). Using hard-shell microbubbles 2D and 3D B-mode imaging depicted a significant decrease in tumor vascularity during antiangiogenic therapy from day 1 on. Using soft-shell microbubbles significant therapy effects were observed at day 4 after therapy in 2D B-mode imaging but could not be detected in the 3D mode. With non-enhanced and contrast-enhanced Doppler imaging significant differences between treated and untreated tumors were found from day 2 on. CONCLUSION Hard-shell microbubble-enhanced 2D and 3D B-mode ultrasound achieved highest sensitivity for assessing therapy effects on tumor vascularisation and were superior to B-mode ultrasound with soft-shell microbubbles and to Doppler imaging.
Radiology | 2016
Sarah Baetke; Anne Rix; François Tranquart; Richard Schneider; Twan Lammers; Fabian Kiessling; Wiltrud Lederle
PURPOSE To assess the ability of vascular endothelial growth factor receptor type 2 (VEGFR2)-targeted and nontargeted ultrasonography (US) to depict antiangiogenic therapy effects and to investigate whether first-pass kinetics obtained with VEGFR2-targeted microbubbles provide independent data about tumor vascularization. MATERIALS AND METHODS Governmental approval was obtained for animal experiments. Vascularization in response to anti-vascular endothelial growth factor receptor or vehicle-control treatment (10 per group) in HaCaT-ras A-5RT3 xenografts was longitudinally assessed in mice by means of first-pass kinetics of nontargeted microbubbles (BR1, BR38; Bracco, Geneva, Switzerland) and VEGFR2-targeted microbubbles (BR55, Bracco) before and 4, 7, and 14 days after therapy. VEGFR2 expression was determined 8 minutes after BR55 injection with destruction-replenishment analysis. US data were validated with immunohistochemistry. Significant differences were evaluated with the Mann-Whitney test. RESULTS First-pass analysis with BR1, BR38, and BR55 showed similar tendencies toward decreasing vascularization, with a stronger decrease in tumors treated with anti-VEGF antibody. The median signal intensity (in arbitrary units [au]) of anti-VEGF antibody-treated versus control tumors at day 14 was as follows: BR1, 5.2 au (interquartile range [IQR], 3.2 au) vs 11.3 au (IQR, 10.0 au), respectively; BR38, 6.2 au (IQR, 3.5) vs 10.0 au (IQR, 7.8); and BR55, 9.5 au (IQR, 6.0 au) vs 13.8 au (IQR, 9.8) (P = .0230). VEGFR2 assessment with BR55 demonstrated significant differences between both groups throughout the therapy period (median signal intensity of anti-VEGF antibody-treated vs control tumors: 0.04 au [IQR, 0.1 au] vs 0.14 au [IQR, 0.08 au], respectively, at day 4, P = .0058; 0.04 au [IQR, 0.06 au] vs 0.13 au [IQR, 0.09 au] at day 7, P = .0058; and 0.06 au [IQR, 0.11 au] vs 0.16 au [IQR, 0.15 au] at day 14, P = .0247). Immunohistochemistry confirmed the lower microvessel density and VEGFR2-positive area fraction in tumors treated with anti-VEGF antibody. CONCLUSION Antiangiogenic therapy effects were detected earlier and more distinctly with VEGFR2-targeted US than with functional US. First-pass analyses with BR55, BR38, and BR1 revealed similar results, with a decrease in vascularization during therapy. Functional data showed that BR55 is not strongly affected by early binding of the microbubbles to VEGFR2. Thus, functional and molecular imaging of angiogenesis can be performed with BR55 within one examination.
Theranostics | 2015
Dennis Doleschel; Anne Rix; Susanne Arns; Karin Palmowski; Felix Gremse; Ruth Merkle; Florian Salopiata; Ursula Klingmüller; Michael Jarsch; Fabian Kiessling; Wiltrud Lederle
Recombinant human erythropoietin (rhuEpo) is currently under debate for the treatment of chemotherapy-induced anemia due to clinical trials showing adverse effects in Epo-treated patients and the discovery of the erythropoietin-receptor (EpoR) in tumor and endothelial cells. Here, using Epo-Cy5.5 as theranostic near-infrared fluorescent probe we analyzed the effects of rhuEpo as co-medication to carboplatin in non-small-cell-lung-cancer (NSCLC)-xenografts with different tumor cell EpoR-expression (H838 ~8-fold higher than A549). Nude mice bearing subcutaneous A549 and H838 NSCLC-xenografts received either only carboplatin or carboplatin and co-medication of rhuEpo in two different doses. Tumor sizes and relative blood volumes (rBV) were longitudinally measured by 3D-contrast-enhanced ultrasound (3D-US). Tumoral EpoR-levels were determined by combined fluorescence molecular tomography (FMT)/ micro computed tomography (µCT) hybrid imaging. We found that rhuEpo predominantly acted on the tumor endothelium. In both xenografts, rhuEpo co-medication significantly increased vessel densities, diameters and the amount of perfused vessels. Accordingly, rhuEpo induced EpoR-phoshorylation and stimulated proliferation of endothelial cells. However, compared with solely carboplatin-treated tumors, tumor growth was significantly slower in the groups co-medicated with rhuEpo. This is explained by the Epo-mediated vascular remodeling leading to improved drug delivery as obvious by a more than 2-fold higher carboplatin accumulation and significantly enhanced tumor apoptosis. In addition, co-medication of rhuEpo reduced tumor hypoxia and diminished intratumoral EpoR-levels which continuously increased during carboplatin (Cp) -treatment. These findings suggest that co-medication of rhuEpo in well balanced doses can be used to improve the accumulation of anticancer drugs. Doses and indications may be personalized and refined using theranostic EpoR-probes.
Nature Communications | 2017
Tatjana Repenko; Anne Rix; Simon Ludwanowski; Dennis Go; Fabian Kiessling; Wiltrud Lederle; Alexander J. C. Kuehne
Conjugated polymer nanoparticles exhibit strong fluorescence and have been applied for biological fluorescence imaging in cell culture and in small animals. However, conjugated polymer particles are hydrophobic and often chemically inert materials with diameters ranging from below 50 nm to several microns. As such, conjugated polymer nanoparticles cannot be excreted through the renal system. This drawback has prevented their application for clinical bio-medical imaging. Here, we present fully conjugated polymer nanoparticles based on imidazole units. These nanoparticles can be bio-degraded by activated macrophages. Reactive oxygen species induce scission of the conjugated polymer backbone at the imidazole unit, leading to complete decomposition of the particles into soluble low molecular weight fragments. Furthermore, the nanoparticles can be surface functionalized for directed targeting. The approach opens a wide range of opportunities for conjugated polymer particles in the fields of medical imaging, drug-delivery, and theranostics.Conjugated polymer nanoparticles have been applied for biological fluorescence imaging in cell culture and in small animals, but cannot readily be excreted through the renal system. Here the authors show fully conjugated polymer nanoparticles based on imidazole units that can be bio-degraded by activated macrophages.
Investigative Radiology | 2016
Anne Rix; Stanley Fokong; Sarah Heringer; Rastislav Pjontek; Lisa Kabelitz; Benjamin Theek; Marc-Alexander Brockmann; Martin Wiesmann; Fabian Kiessling
ObjectivesInterventions such as balloon angioplasty can cause vascular injury leading to platelet activation, thrombus formation, and inflammatory response. This induces vascular smooth muscle cell activation and subsequent re-endothelialization with expression of &agr;v&bgr;3-integrin by endothelial cells and vascular smooth muscle cell. Thus, poly-N-butylcyanoacrylate microbubbles (MBs) targeted to &agr;v&bgr;3-integrin were evaluated for monitoring vascular healing after vessel injury in pigs using molecular ultrasound imaging. Materials and MethodsApproval for animal experiments was obtained. The binding specificity of &agr;v&bgr;3-integrin–targeted MB to human umbilical vein endothelial cells was tested with fluorescence microscopy. In vivo imaging was performed using a clinical ultrasound system and an 8-MHz probe. Six mini pigs were examined after vessel injury in the left carotid artery. The right carotid served as control. Uncoated MB, cDRG-coated MB, and &agr;v&bgr;3-integrin–specific cRGD-coated MB were injected sequentially. Bound MBs were assessed 8 minutes after injection using ultrasound replenishment analysis. Measurements were performed 2 hours, 1 and 5 weeks, and 3 and 6 months after injury. In vivo data were validated by immunohistochemistry. ResultsSignificantly stronger binding of cRGD-MB than MB and cDRG-MB to human umbilical vein endothelial cells was found (P < 0.01). As vessel injury leads to upregulation of &agr;v&bgr;3-integrin, cRGD-MBs bound significantly stronger (P < 0.05) in injured carotid arteries than at the counter side 1 week after vessel injury and significant differences could also be observed after 5 weeks. After 3 months, &agr;v&bgr;3-integrin expression decreased to baseline and binding of cRGD-MB was comparable in both vessels. Values remained at baseline also after 6 months. ConclusionsUltrasound imaging with RGD-MB is promising for monitoring vascular healing after vessel injury. This may open new perspectives to assess vascular damage after radiological interventions.
Ultrasound in Medicine and Biology | 2014
Anne Rix; Moritz Palmowski; Felix Gremse; Karin Palmowski; Wiltrud Lederle; Fabian Kiessling; Jessica Bzyl
Quantitative contrast-enhanced ultrasound plays an important role in tumor characterization and treatment assessment. Besides established functional ultrasound techniques, ultrasound molecular imaging using microbubbles targeted to disease-associated markers is increasingly being applied in pre-clinical studies. Often, repeated injections of non-targeted or targeted microbubbles during the same imaging session are administered. However, the influence of repeated injections on the accuracy of the quantitative data is unclear. Therefore, in tumor-bearing mice, we investigated the influence of multiple injections of non-targeted microbubbles (SonoVue) on time to peak and peak enhancement in liver and tumor tissue and of vascular endothelial growth factor receptor 2 (VEGFR2)-targeted contrast agents (MicroMarker) on specific tumor accumulation. We found significantly decreasing values for time to peak and a tendency for increased values for peak enhancement after multiple injections. Repeated injections of VEGFR2-targeted microbubbles led to significantly increased tumor accumulation, which may result from the exposure of additional binding sites at endothelial surfaces caused by mechanical forces from destroyed microbubbles.
Radiologe | 2015
Anne Rix; Moritz Palmowski; Fabian Kiessling
BACKGROUND Contrast-enhanced ultrasound imaging is increasingly being used in clinical applications, particularly for cardiovascular and liver diagnostics. In this context the availability of new molecular contrast agents and the initiation of clinical translation promises new options for pathomechanistic diagnostics. MATERIAL AND METHODS Analysis of the current literature on the development of molecular ultrasound contrast agents, the detection methods as well as the applications in preclinical and clinical studies. RESULTS Molecular contrast agents have become established in preclinical research for the detection of inflammation and angiogenesis and have been continuously refined over recent years. They consist of gas filled microbubbles with a diameter of 1-5 µm and the gas core is stabilized by a shell made of lipids, proteins or polymers to which biomolecules are conjugated that determine the target specificity. The agent BR55 is the first clinically evaluated molecular ultrasound contrast agent. It binds to the angiogenesis marker vascular endothelial growth factor receptor 2 (VEGFR2) and has been studied in several preclinical and clinical phase I and II studies on tumor diagnostics and characterization. CONCLUSION Molecular ultrasound imaging is rapidly evolving in preclinical research for a broad field of applications. Translation to clinical practice is conceivable for many indications and is already ongoing for BR55.