Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Rovelet-Lecrux is active.

Publication


Featured researches published by Anne Rovelet-Lecrux.


Nature Genetics | 2006

APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy.

Anne Rovelet-Lecrux; Didier Hannequin; Grégory Raux; Nathalie Le Meur; Annie Laquerrière; Anne Vital; Cécile Dumanchin; Sébastien Feuillette; Alexis Brice; Martine Vercelletto; Frédéric Dubas; Thierry Frebourg; Dominique Campion

We report duplication of the APP locus on chromosome 21 in five families with autosomal dominant early-onset Alzheimer disease (ADEOAD) and cerebral amyloid angiopathy (CAA). Among these families, the duplicated segments had a minimal size ranging from 0.58 to 6.37 Mb. Brains from individuals with APP duplication showed abundant parenchymal and vascular deposits of amyloid-β peptides. Duplication of the APP locus, resulting in accumulation of amyloid-β peptides, causes ADEOAD with CAA.


Brain | 2009

Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members

NiCole Finch; Matt Baker; Richard Crook; Katie Swanson; Karen M. Kuntz; Rebecca Surtees; Gina Bisceglio; Anne Rovelet-Lecrux; Bradley F. Boeve; Ronald C. Petersen; Dennis W. Dickson; Steven G. Younkin; Vincent Deramecourt; Julia E. Crook; Neill R. Graff-Radford; Rosa Rademakers

Mutations in the progranulin gene (GRN) are an important cause of frontotemporal lobar degeneration (FTLD) with ubiquitin and TAR DNA-binding protein 43 (TDP43)-positive pathology. The clinical presentation associated with GRN mutations is heterogeneous and may include clinical probable Alzheimers disease. All GRN mutations identified thus far cause disease through a uniform disease mechanism, i.e. the loss of functional GRN or haploinsufficiency. To determine if expression of GRN in plasma could predict GRN mutation status and could be used as a biological marker, we optimized a GRN ELISA and studied plasma samples of a consecutive clinical FTLD series of 219 patients, 70 control individuals, 72 early-onset probable Alzheimers disease patients and nine symptomatic and 18 asymptomatic relatives of GRN mutation families. All FTLD patients with GRN loss-of-function mutations showed significantly reduced levels of GRN in plasma to about one third of the levels observed in non-GRN carriers and control individuals (P < 0.001). No overlap in distributions of GRN levels was observed between the eight GRN loss-of-function mutation carriers (range: 53–94 ng/ml) and 191 non-GRN mutation carriers (range: 115–386 ng/ml). Similar low levels of GRN were identified in asymptomatic GRN mutation carriers. Importantly, ELISA analyses also identified one probable Alzheimers disease patient (1.4%) carrying a loss-of-function mutation in GRN. Biochemical analyses further showed that the GRN ELISA only detects full-length GRN, no intermediate granulin fragments. This study demonstrates that using a GRN ELISA in plasma, pathogenic GRN mutations can be accurately detected in symptomatic and asymptomatic carriers. The ∼75% reduction in full-length GRN, suggests an unbalanced GRN metabolism in loss-of-function mutation carriers whereby more GRN is processed into granulins. We propose that plasma GRN levels could be used as a reliable and inexpensive tool to identify all GRN mutation carriers in early-onset dementia populations and asymptomatic at-risk individuals.


Cell | 2008

A Polymorphism in CALHM1 Influences Ca2+ Homeostasis, Aβ Levels, and Alzheimer's Disease Risk

Ute Dreses-Werringloer; Jean Charles Lambert; Valérie Vingtdeux; Haitian Zhao; Horia Vais; Adam P. Siebert; Ankit Jain; Jeremy Koppel; Anne Rovelet-Lecrux; Didier Hannequin; Florence Pasquier; Daniela Galimberti; Elio Scarpini; David Mann; Corinne Lendon; Dominique Campion; Philippe Amouyel; Peter Davies; J. Kevin Foskett; Fabien Campagne; Philippe Marambaud

Alzheimers disease (AD) is a genetically heterogeneous disorder characterized by early hippocampal atrophy and cerebral amyloid-beta (Abeta) peptide deposition. Using TissueInfo to screen for genes preferentially expressed in the hippocampus and located in AD linkage regions, we identified a gene on 10q24.33 that we call CALHM1. We show that CALHM1 encodes a multipass transmembrane glycoprotein that controls cytosolic Ca(2+) concentrations and Abeta levels. CALHM1 homomultimerizes, shares strong sequence similarities with the selectivity filter of the NMDA receptor, and generates a large Ca(2+) conductance across the plasma membrane. Importantly, we determined that the CALHM1 P86L polymorphism (rs2986017) is significantly associated with AD in independent case-control studies of 3404 participants (allele-specific OR = 1.44, p = 2 x 10(-10)). We further found that the P86L polymorphism increases Abeta levels by interfering with CALHM1-mediated Ca(2+) permeability. We propose that CALHM1 encodes an essential component of a previously uncharacterized cerebral Ca(2+) channel that controls Abeta levels and susceptibility to late-onset AD.


Brain | 2008

Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study

Isabelle Le Ber; Agnès Camuzat; Didier Hannequin; Florence Pasquier; Eric Guedj; Anne Rovelet-Lecrux; Valérie Hahn-Barma; Julie van der Zee; Fabienne Clot; Serge Bakchine; Michèle Puel; Mustapha Ghanim; Lucette Lacomblez; Jacqueline Mikol; Vincent Deramecourt; Pascal Lejeune; Vincent de La Sayette; Serge Belliard; Martine Vercelletto; Christian Meyrignac; Christine Van Broeckhoven; Jean-Charles Lambert; Patrice Verpillat; Dominique Campion; Marie-Odile Habert; Bruno Dubois; Alexis Brice

Frontotemporal dementia (FTD), characterized by behavioural and language disorders, is a clinically, genetically and pathologically heterogeneous group of diseases. The most recently identified of the four known genes is GRN, associated with 17q-linked FTD with ubiquitin-immunoreactive inclusions. GRN was analysed in 502 probands with frontal variant FTD (fvFTD), FTD with motoneuron disease (FTD-MND), primary progressive aphasia (PPA) and corticobasal degeneration syndrome (CBDS). We studied the clinical, neuropsychological and brain perfusion characteristics of mutation carriers. Eighteen mutations, seven novel were found in 24 families including 32 symptomatic mutation carriers. No copy number variation was found. The phenotypes associated with GRN mutations vary greatly: 20/32 (63%) carriers had fvFTD, the other (12/32, 37%) had clinical diagnoses of PPA, CBDS, Lewy body dementia or Alzheimers disease. Parkinsonism developed in 13/32 (41%), visual hallucinations in 8/32 (25%) and motor apraxia in 5/21 (24%). Constructional disorders were present in 10/21 (48%). Episodic memory disorders were frequent (16/18, 89%), consistent with hippocampal amnestic syndrome in 5/18 (28%). Hypoperfusion was observed in the hippocampus, parietal lobe and posterior cingulate gyrus, as well as the frontotemporal cortices. The frequency of mutations according to phenotype was 5.7% (20/352) in fvFTD, 17.9% (19/106) in familial forms, 4.4% in PPA (3/68), 3.3% in CBDS (1/30). Hallucinations, apraxia and amnestic syndrome may help differentiate GRN mutation carriers from others FTD patients. Variable phenotypes and neuropsychological profiles, as well as brain perfusion profiles associated with GRN mutations may reflect different patterns of neurodegeneration. Since all the mutations cause a progranulin haploinsufficiency, additional factors probably explain the variable clinical presentation of the disease.


Molecular Psychiatry | 2012

High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease.

C Pottier; Didier Hannequin; Sophie Coutant; Anne Rovelet-Lecrux; D Wallon; S Rousseau; S Legallic; C Paquet; S Bombois; J Pariente; C Thomas-Anterion; A Michon; B Croisile; F Etcharry-Bouyx; Claudine Berr; J.-F. Dartigues; Philippe Amouyel; H Dauchel; C Boutoleau-Bretonnière; C Thauvin; Thierry Frebourg; J-C Lambert; Dominique Campion

Performing exome sequencing in 14 autosomal dominant early-onset Alzheimer disease (ADEOAD) index cases without mutation on known genes (amyloid precursor protein (APP), presenilin1 (PSEN1) and presenilin2 (PSEN2)), we found that in five patients, the SORL1 gene harbored unknown nonsense (n=1) or missense (n=4) mutations. These mutations were not retrieved in 1500 controls of same ethnic origin. In a replication sample, including 15 ADEOAD cases, 2 unknown non-synonymous mutations (1 missense, 1 nonsense) were retrieved, thus yielding to a total of 7/29 unknown mutations in the combined sample. Using in silico predictions, we conclude that these seven private mutations are likely to have a pathogenic effect. SORL1 encodes the Sortilin-related receptor LR11/SorLA, a protein involved in the control of amyloid beta peptide production. Our results suggest that besides the involvement of the APP and PSEN genes, further genetic heterogeneity, involving another gene of the same pathway is present in ADEOAD.


Neurology | 2013

Mutation of the PDGFRB gene as a cause of idiopathic basal ganglia calcification

Gaël Nicolas; Cyril Pottier; David Maltête; Sophie Coutant; Anne Rovelet-Lecrux; Solenn Legallic; Stéphane Rousseau; Y. Vaschalde; Lucie Guyant-Maréchal; J. Augustin; Olivier Martinaud; Luc Defebvre; Pierre Krystkowiak; Jérémie Pariente; M. Clanet; Pierre Labauge; Xavier Ayrignac; Romain Lefaucheur; I. Le Ber; Thierry Frebourg; Didier Hannequin; Dominique Campion

Objectives: To identify a new idiopathic basal ganglia calcification (IBGC)-causing gene. Methods: In a 3-generation family with no SLC20A2 mutation, we performed whole exome sequencing in 2 affected first cousins, once removed. Nonsynonymous coding variants, splice acceptor and donor site variants, and frameshift coding indels (NS/SS/I) were filtered against dbSNP131, the HapMap Project, 1000 Genomes Project, and our in-house database including 72 exomes. Results: Seventeen genes were affected by identical unknown NS/SS/I variations in the 2 patients. After screening the relatives, the p.Leu658Pro substitution within the PDGFRB gene remained the sole unknown mutation segregating with the disease in the family. This variation, which is predicted to be highly damaging, was present in 13 of 13 affected subjects and absent in 8 relatives without calcifications. Sequencing PDGFRB of 19 other unrelated IBGC cases allowed us to detect another potentially pathogenic substitution within PDGFRB, p.Arg987Trp, also predicted to be highly damaging. PDGFRB encodes a protein involved in angiogenesis and in the regulation of inorganic phosphate (Pi) transport in vascular smooth muscle cells via Pit-1, a Pi transporter encoded by SLC20A1. Conclusion: Mutations of PDGFRB further support the involvement of this biological pathway in IBGC pathophysiology.


Journal of Alzheimer's Disease | 2013

TREM2 R47H Variant as a Risk Factor for Early-Onset Alzheimer's Disease

Cyril Pottier; David Wallon; Stéphane Rousseau; Anne Rovelet-Lecrux; Anne-Claire Richard; Adeline Rollin-Sillaire; Thierry Frebourg; Dominique Campion; Didier Hannequin

The rs75932628-T variant of the gene encoding the triggering receptor expressed on myeloid cells 2 (TREM2) has recently been identified as a rare risk factor for late-onset Alzheimers disease (AD). In this study we examined the association between TREM2 exon 2 variants and early-onset AD in a sample of Caucasian subjects of French origin including 726 patients with age of onset ≤65 years and 783 controls. Only the rs75932628-T variant (predicted to cause an R47H substitution) conferred a significant risk for early-onset AD (OR, 4.07; 95% CI, 1.3 to 16.9; p = 0.009). These results confirm the association between this variant and AD and underline its involvement in early-onset cases.


Journal of Neurology, Neurosurgery, and Psychiatry | 2007

APP locus duplication in a Finnish family with dementia and intracerebral haemorrhage

Anne Rovelet-Lecrux; Thierry Frebourg; Hannu Tuominen; Kari Majamaa; Dominique Campion; Anne M. Remes

Missense mutations in the genes encoding amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) have been found to cause some forms of autosomal dominant early onset Alzheimer disease (AD). Autosomal dominant point mutations in the APP gene are associated with β-amyloid peptide related cerebral amyloid angiopathy (CAA) and AD.1 Duplications of the APP locus on chromosome 21 have recently been reported to be associated with a phenotype similar to that caused by point mutations in the APP gene, including progressive AD and strokes and intracerebral haemorrhage (ICH) of variable frequency.2–4 The neuropathological findings have been consistent with a diagnosis of definite AD according to the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). The most prominent feature in all cases has been severe CAA in the leptomeningeal vessels together with superficial and deep intraparenchymatous small arteries, capillaries and venules. Figure 1 Detection of amyloid precursor protein (APP) duplication by quantitative multiplex PCR of short fluorescent fragments (QMPSF). The electropherogram of the affected subject (in red) was superimposed on that of a normal individual (in blue) by adjusting the peaks obtained from the control amplicon PCBD2 located on chromosome 5 to the same level. The vertical axis shows fluorescence in arbitrary units and the horizontal axis indicates the size of the amplicons in base pairs. Arrows indicate heterozygous duplication of the amplicons, as detected by a 1.5 fold heightening of the corresponding peaks. This QMPSF covers four genes located at 21q21: MRPL39 , GABPA , APP and CYYR1 . We have previously described detailed clinical features of a four generation Finnish family, including 14 …


Journal of Alzheimer's Disease | 2012

The French Series of Autosomal Dominant Early Onset Alzheimer's Disease Cases: Mutation Spectrum and Cerebrospinal Fluid Biomarkers

David Wallon; Stéphane Rousseau; Anne Rovelet-Lecrux; Muriel Quillard-Muraine; Lucie Guyant-Maréchal; Olivier Martinaud; Jérémie Pariente; Michèle Puel; Adeline Rollin-Sillaire; Florence Pasquier; Isabelle Le Ber; Marie Sarazin; Bernard Croisile; Claire Boutoleau-Bretonnière; Catherine Thomas-Anterion; Claire Paquet; Olivier Moreaud; Audrey Gabelle; François Sellal; Mathilde Sauvée; Annie Laquerrière; Charles Duyckaerts; Marie-Bernadette Delisle; Nathalie Streichenberger; Béatrice Lannes; Thierry Frebourg; Didier Hannequin; Dominique Campion

We describe 56 novel autosomal dominant early-onset Alzheimer disease (ADEOAD) families with PSEN1, PSEN2, and AβPP mutations or duplications, raising the total of families with mutations on known genes to 111 (74 PSEN1, 8 PSEN2, 16 AβPP, and 13 AβPP duplications) in the French series. In 33 additional families (23% of the series), the genetic determinism remained uncharacterized after this screening. Cerebrospinal fluid (CSF) biomarker levels were obtained for patients of 58 families (42 with known mutations and 16 without genetic characterization). CSF biomarkers profile was consistent with an AD diagnosis in 90% of families carrying mutations on known genes. In families without mutation, CSF biomarkers were consistent with AD diagnosis in 14/16 cases. Overall, these results support further genetic heterogeneity in the determinism of ADEOAD and suggest that other major genes remain to be characterized.


Neurology | 2007

Variations in the APP gene promoter region and risk of Alzheimer disease

Lucie Guyant-Maréchal; Anne Rovelet-Lecrux; L. Goumidi; E. Cousin; Didier Hannequin; G. Raux; C. Penet; S. Ricard; S. Macé; Philippe Amouyel; Jean-Francois Deleuze; Thierry Frebourg; Alexis Brice; Jean-Charles Lambert; D. Campion

We genotyped five polymorphisms, including two polymorphisms with known effects on transcriptional activity, in a large cohort of 427 Alzheimer disease (AD) cases and 472 control subjects. An association between rs463946 (−3102 G/C) and AD was found and was confirmed in a replication sample of a similar size. By contrast, analysis of three recently described rare mutations influencing APP transcription did not confirm their association with AD risk.

Collaboration


Dive into the Anne Rovelet-Lecrux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie Sarazin

Paris Descartes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge