Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne S. Henkel is active.

Publication


Featured researches published by Anne S. Henkel.


Circulation Research | 1999

Cardiac Troponin I Gene Knockout A Mouse Model of Myocardial Troponin I Deficiency

XuPei Huang; YeQing Pi; Kevin J. Lee; Anne S. Henkel; Ronald G. Gregg; Patricia A. Powers; Jeffery W. Walker

Troponin I is a subunit of the thin filament-associated troponin-tropomyosin complex involved in calcium regulation of skeletal and cardiac muscle contraction. We deleted the cardiac isoform of troponin I by using gene targeting in murine embryonic stem cells to determine the developmental and physiological effects of the absence of this regulatory protein. Mice lacking cardiac troponin I were born healthy, with normal heart and body weight, because a fetal troponin I isoform (identical to slow skeletal troponin I) compensated for the absence of cardiac troponin I. Compensation was only temporary, however, as 15 days after birth slow skeletal troponin I expression began a steady decline, giving rise to a troponin I deficiency. Mice died of acute heart failure on day 18, demonstrating that some form of troponin I is required for normal cardiac function and survival. Ventricular myocytes isolated from these troponin I-depleted hearts displayed shortened sarcomeres and elevated resting tension measured under relaxing conditions and had a reduced myofilament Ca sensitivity under activating conditions. The results show that (1) developmental downregulation of slow skeletal troponin I occurs even in the absence of cardiac troponin I and (2) the resultant troponin I depletion alters specific mechanical properties of myocardium and can lead to a lethal form of acute heart failure.


Nature Clinical Practice Gastroenterology & Hepatology | 2006

Nutritional support in patients with chronic liver disease

Anne S. Henkel; Alan L. Buchman

Malnutrition is highly prevalent among patients with chronic liver disease and is nearly universal among patients awaiting liver transplantation. Malnutrition in patients with cirrhosis leads to increased morbidity and mortality rates. Furthermore, patients who are severely malnourished before transplant surgery have a higher rate of complications and a decreased overall survival rate after liver transplantation. In light of the high incidence of malnutrition among patients with chronic liver disease and the complications that result from malnutrition in these patients, it is essential to assess the nutritional status of all patients with liver disease, and to initiate treatment as indicated. This review addresses the etiologies of malnutrition, methods used to assess nutritional status, and appropriate treatment strategies.


Journal of Biological Chemistry | 2004

Hepatic Overexpression of Murine Abcb11 Increases Hepatobiliary Lipid Secretion and Reduces Hepatic Steatosis

Anne Figge; Frank Lammert; Beverly Paigen; Anne S. Henkel; Siegfried Matern; Ron Korstanje; Benjamin L. Shneider; Frank Chen; Erik Stoltenberg; Kathryn Spatz; Farzana Hoda; David E. Cohen; Richard M. Green

Abcb11 encodes for the liver bile salt export pump, which is rate-limiting for hepatobiliary bile salt secretion. We employed transthyretin-Abcb11 and BAC-Abcb11 transgenes to develop mice overexpressing the bile salt export pump in the liver. The mice manifest increases in bile flow and biliary secretion of bile salts, phosphatidylcholine, and cholesterol. Hepatic gene expression of cholesterol 7α-hydroxylase and ileal expression of the apical sodium bile salt transporter are markedly reduced, whereas gene expression of targets of the nuclear bile salt receptor FXR (ileal lipid-binding protein, short heterodimer partner (SHP) is increased. Because these changes in gene expression are associated with an increased overall hydrophobicity of the bile salt pool and a 4-fold increase of the FXR ligand taurodeoxycholate, they reflect bile salt-mediated regulation of FXR and SHP target genes. Despite the increased biliary secretion of bile salts, fecal bile salt excretion is unchanged, suggestive of an enhanced enterohepatic cycling of bile salts. Abcb11 transgenic mice fed a lithogenic (high cholesterol/fat/cholic acid) diet display markedly reduced hepatic steatosis compared with wild-type controls. We conclude that mice overexpressing Abcb11 display an increase in biliary bile salt secretion and taurodeoxycholate content, which is associated with FXR/SHP-mediated changes in hepatic and ileal gene expression. Because these mice are resistant to hepatic lipid accumulation, regulation of Abcb11 may be important for the pathogenesis and treatment of steatohepatitis.


Journal of Lipid Research | 2011

A chronic high-cholesterol diet paradoxically suppresses hepatic CYP7A1 expression in FVB/NJ mice

Anne S. Henkel; Kristy A. Anderson; Amanda M. Dewey; Mark H. Kavesh; Richard M. Green

Cholesterol 7α-hydroxylase (CYP7A1) encodes for the rate-limiting step in the conversion of cholesterol to bile acids in the liver. In response to acute cholesterol feeding, mice upregulate CYP7A1 via stimulation of the liver X receptor (LXR) α. However, the effect of a chronic high-cholesterol diet on hepatic CYP7A1 expression in mice is unknown. We demonstrate that chronic cholesterol feeding (0.2% or 1.25% w/w cholesterol for 12 weeks) in FVB/NJ mice results in a >60% suppression of hepatic CYP7A1 expression associated with a >2-fold increase in hepatic cholesterol content. In contrast, acute cholesterol feeding induces a >3-fold upregulation of hepatic CYP7A1 expression. We show that chronic, but not acute, cholesterol feeding increases the expression of hepatic inflammatory cytokines, tumor necrosis factor (TNF)α, and interleukin (IL)-1β, which are known to suppress hepatic CYP7A1 expression. Chronic cholesterol feeding also results in activation of the mitogen activated protein (MAP) kinases, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). Furthermore, we demonstrate in vitro that suppression of CYP7A1 by TNFα and IL-1β is dependent on JNK and ERK signaling. We conclude that chronic high-cholesterol feeding suppresses CYP7A1 expression in mice. We propose that chronic cholesterol feeding induces inflammatory cytokine activation and liver damage, which leads to suppression of CYP7A1 via activation of JNK and ERK signaling pathways.


Seminars in Liver Disease | 2013

The unfolded protein response in fatty liver disease.

Anne S. Henkel; Richard M. Green

The unfolded protein response (UPR) is a protective cellular response activated under conditions of endoplasmic reticulum (ER) stress. The hepatic UPR is activated in several forms of liver disease including nonalcoholic fatty liver disease (NAFLD). Recent data defining the role of the UPR in hepatic lipid metabolism have identified molecular mechanisms that may underlie the association between UPR activation and NAFLD. It has become increasingly evident that the IRE1α/Xbp1 pathway of the UPR is critical for hepatic lipid homeostasis, and dysregulation of this evolutionarily conserved pathway is associated with human nonalcoholic steatohepatitis (NASH). Although increasing evidence has delineated the importance of UPR pathway signaling in fatty liver disorders, the regulation of the hepatic UPR in normal physiology and fatty liver disorders remains incompletely understood. Understanding the role of the UPR in hepatic lipid metabolism may lead to the identification of novel therapeutic targets for the treatment of NAFLD.


Journal of Biological Chemistry | 2009

Homocysteine supplementation attenuates the unfolded protein response in a murine nutritional model of steatohepatitis.

Anne S. Henkel; Marc S. Elias; Richard M. Green

Hyperhomocysteinemia has been correlated with hepatic steatosis and activation of the unfolded protein response (UPR), yet a causal relationship has not been established. Although methionine and choline are essential components of homocysteine metabolism, the role of homocysteine in the pathogenesis of a methionine- and choline-deficient (MCD) diet remains unknown. We explored the effects of homocysteine supplementation on hepatic steatosis and the UPR in mice fed a control or MCD diet. Mice fed the MCD diet developed severe hyperhomocysteinemia and activation of the hepatic UPR. Supplementing the MCD diet with homocysteine attenuated the MCD diet-induced hepatic UPR activation and other injurious effects of the MCD diet including hepatic cholesterol accumulation, weight loss, and plasma ALT elevation. Homocysteine supplementation replenished the MCD diet-induced depletion of hepatic S-adenosylmethionine (SAM). Depleting SAM in HepG2 cells using MAT1α siRNA or cycloleucine resulted in enhanced activation of the UPR upon exposure to thapsigargin. Mice fed a control diet supplemented with homocysteine had a 3-fold elevation in plasma homocysteine level by 2 weeks and 6-fold elevation by 6 weeks but demonstrated no other pathophysiologic change. In summary, we found that homocysteine attenuates MCD diet-induced hepatic UPR activation, likely via repletion of hepatic SAM. Furthermore, homocysteine supplementation alone does not cause hepatic steatosis or UPR activation despite inducing hyperhomocysteinemia. These studies indicate that although hyperhomocysteinemia is often associated with hepatic steatosis and UPR activation, these effects may be a secondary response rather than a direct effect of homocysteine.


Mammalian Genome | 2005

Mice overexpressing hepatic Abcb11 rapidly develop cholesterol gallstones

Anne S. Henkel; Zhixin Wei; David E. Cohen; Richard M. Green

Cholelithiasis is a polygenic disease, although the genes responsible for gallstone formation have not yet been clearly identified. QTL analysis has identified the Lith 1 loci on mouse Chromosome 2, and the hepatic bile salt transporter Abcb11 maps to the Lith 1 locus. We have used recently developed TTR-Abcb11 transgenic mice that overexpress Abcb11 to determine the effects of Abcb11 overexpression on cholesterol gallstone formation. TTR-Abcb11 and FVB/NJ strain control mice were fed a lithogenic or chow diet and cholesterol crystal and gallstone formation were measured. Biliary lipids in gallbladder bile and gene expression of canalicular lipid transporters were also analyzed. TTR-Abcb11 mice fed a lithogenic diet had an increased rate of cholesterol crystal and gallstone formation. This was associated with an increase in both the hydrophobic bile salt and cholesterol content of gallbladder bile. Expression of Abcb4, Abcg5, and Abcg8 did not change before gallstone formation. These data indicate that hepatic overexpression of Abcb11 increases the rate of cholesterol gallstone formation. This is likely because of increases in bile salt hydrophobicity but not because of alterations of other biliary lipid transporters. These findings strongly support Abcb11 as a Lith 1 gene.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Reducing endoplasmic reticulum stress does not improve steatohepatitis in mice fed a methionine- and choline-deficient diet

Anne S. Henkel; Amanda M. Dewey; Kristy A. Anderson; Shantel Olivares; Richard M. Green

Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of nonalcoholic steatohepatitis. The ER stress response is activated in the livers of mice fed a methionine- and choline-deficient (MCD) diet, yet the role of ER stress in the pathogenesis of MCD diet-induced steatohepatitis is unknown. Using chemical chaperones on hepatic steatosis and markers of inflammation and fibrosis in mice fed a MCD diet, we aim to determine the effects of reducing ER stress. C57BL/6J mice were fed a MCD diet with or without the ER chemical chaperones 4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) for 2 wk. TUDCA and PBA effectively attenuated the ER stress response in MCD diet-fed mice, as evidenced by reduced protein levels of phosphorylated eukaryotic initiation factor 2α and phosphorylated JNK and suppression of mRNA levels of CCAAT/enhancer binding protein homologous protein, glucose-regulated protein 78 kDa, and X-box binding protein 1. However, PBA and TUDCA did not decrease MCD diet-induced hepatic steatosis. MCD diet-induced hepatic inflammation, as evidenced by increased plasma alanine aminotransferase and induction of hepatic TNFα expression, was also not reduced by PBA or TUDCA. PBA and TUDCA did not attenuate MCD diet-induced upregulation of the fibrosis-associated genes tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9. ER chemical chaperones reduce MCD diet-induced ER stress, yet they do not improve MCD diet-induced hepatic steatosis, inflammation, or activation of genes associated with fibrosis. These data suggest that although the ER stress response is activated by the MCD diet, it does not have a primary role in the pathogenesis of MCD diet-induced steatohepatitis.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2015

Hepatocyte X-Box Binding Protein 1 Deficiency Increases Liver Injury in Mice Fed a High Fat/Sugar Diet

Xiaoying Liu; Anne S. Henkel; Brian E. LeCuyer; Matthew J. Schipma; Kristy A. Anderson; Richard M. Green

Fatty liver is associated with endoplasmic reticulum stress and activation of the hepatic unfolded protein response (UPR). Reduced hepatic expression of the UPR regulator X-box binding protein 1 spliced (XBP1s) is associated with human nonalcoholic steatohepatitis (NASH), and feeding mice a high-fat diet with fructose/sucrose causes progressive, fibrosing steatohepatitis. This study examines the role of XBP1 in nonalcoholic fatty liver injury and fatty acid-induced cell injury. Hepatocyte-specific Xbp1-deficient (Xbp1(-/-)) mice were fed a high-fat/sugar (HFS) diet for up to 16 wk. HFS-fed Xbp1(-/-) mice exhibited higher serum alanine aminotransferase levels compared with Xbp1(fl/fl) controls. RNA sequencing and Gene Ontogeny pathway analysis of hepatic mRNA revealed that apoptotic process, inflammatory response, and extracellular matrix structural constituent pathways had enhanced activation in HFS-fed Xbp1(-/-) mice. Liver histology demonstrated enhanced injury and fibrosis but less steatosis in the HFS-fed Xbp1(-/-) mice. Hepatic Col1a1 and Tgfβ1 gene expression, as well as Chop and phosphorylated JNK (p-JNK), were increased in Xbp1(-/-) compared with Xbp1(fl/fl) mice after HFS feeding. In vitro, stable XBP1-knockdown Huh7 cells (Huh7-KD) and scramble control cells (Huh7-SCR) were generated and treated with palmitic acid (PA) for 24 h. PA-treated Huh7-KD cells had increased cytotoxicity measured by lactate dehydrogenase release, apoptotic nuclei, and caspase3/7 activity assays compared with Huh7-SCR cells. CHOP and p-JNK expression was also increased in Huh7-KD cells following PA treatment. In conclusion, loss of XBP1 enhances injury in both in vivo and in vitro models of fatty liver injury. We speculate that hepatic XBP1 plays an important protective role in pathogenesis of NASH.


Journal of Biological Chemistry | 2015

Hepatic Xbp1 Gene Deletion Promotes Endoplasmic Reticulum Stress-induced Liver Injury and Apoptosis.

Shantel Olivares; Anne S. Henkel

Background: The unfolded protein response (UPR) either restores homeostasis or promotes apoptosis in response to endoplasmic reticulum (ER) stress. Results: ER stress causes prolonged UPR activation, severe liver injury, and enhanced apoptosis in mice lacking hepatic Xbp1. Conclusion: Hepatic Xbp1 is critical for hepatic recovery from ER stress. Significance: We implicate Xbp1 in mediating the pro-survival response of the UPR. Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR), a highly conserved signaling cascade that functions to alleviate stress and promote cell survival. If, however, the cell is unable to adapt and restore homeostasis, then the UPR activates pathways that promote apoptotic cell death. The molecular mechanisms governing the critical transition from adaptation and survival to initiation of apoptosis remain poorly understood. We aim to determine the role of hepatic Xbp1, a key mediator of the UPR, in controlling the adaptive response to ER stress in the liver. Liver-specific Xbp1 knockout mice (Xbp1LKO) and Xbp1fl/fl control mice were subjected to varying levels and durations of pharmacologic ER stress. Xbp1LKO and Xbp1fl/fl mice showed robust and equal activation of the UPR acutely after induction of ER stress. By 24 h, Xbp1fl/fl controls showed complete resolution of UPR activation and no liver injury, indicating successful adaptation to the stress. Conversely, Xbp1LKO mice showed ongoing UPR activation associated with progressive liver injury, apoptosis, and, ultimately, fibrosis by day 7 after induction of ER stress. These data indicate that hepatic XBP1 controls the adaptive response of the UPR and is critical to restoring homeostasis in the liver in response to ER stress.

Collaboration


Dive into the Anne S. Henkel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge