Anne Seawright
Western General Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Seawright.
PLOS Genetics | 2008
Dirk A. Kleinjan; Ruth M Bancewicz; Philippe Gautier; Ralf Dahm; Helia Berrit Schönthaler; Giuseppe Damante; Anne Seawright; Ann M. Hever; Patricia L. Yeyati; Veronica van Heyningen; Pedro Coutinho
Gene duplication is a major driver of evolutionary divergence. In most vertebrates a single PAX6 gene encodes a transcription factor required for eye, brain, olfactory system, and pancreas development. In zebrafish, following a postulated whole-genome duplication event in an ancestral teleost, duplicates pax6a and pax6b jointly fulfill these roles. Mapping of the homozygously viable eye mutant sunrise identified a homeodomain missense change in pax6b, leading to loss of target binding. The mild phenotype emphasizes role-sharing between the co-orthologues. Meticulous mapping of isolated BACs identified perturbed synteny relationships around the duplicates. This highlights the functional conservation of pax6 downstream (3′) control sequences, which in most vertebrates reside within the introns of a ubiquitously expressed neighbour gene, ELP4, whose pax6a-linked exons have been lost in zebrafish. Reporter transgenic studies in both mouse and zebrafish, combined with analysis of vertebrate sequence conservation, reveal loss and retention of specific cis-regulatory elements, correlating strongly with the diverged expression of co-orthologues, and providing clear evidence for evolution by subfunctionalization.
Genomics | 1995
Judy Fantes; Kathy Oghene; Shelagh Boyle; Sarah Danes; Judy M. Fletcher; Elspeth A. Bruford; Kathy Williamson; Anne Seawright; Andreas Schedl; Isabel M. Hanson; Günther Zehetner; Ranjit Bhogal; Hans Lehrach; Simon G. Gregory; Jon Williams; Peter Little; Grant C. Sellar; Jan M. N. Hoovers; Marcel Mannens; Jean Weissenbach; Claudine Junien; Veronica van Heyningen; Wendy A. Bickmore
We describe a detailed physical map of human chromosome 11, extending from the distal part of p13 through the entirety of p14 to proximal p15.1. The primary level of mapping is based on chromosome breakpoints that divide the region into 20 intervals. At higher resolution YACs cover approximately 12 Mb of the region, and in many places overlapping cosmids are ordered in contiguous arrays. The map incorporates 18 known genes, including precise localization of the GTF2H1 gene encoding the 62-kDa subunit of TFIIH. We have also localized four expressed sequences of unknown function. The physical map incorporates genetic markers that allow relationships between physical and genetic distance to be examined, and similarly includes markers from a radiation hybrid map of 11. The cytogenetic location of cosmids has been examined on high-resolution banded chromosomes by fluorescence in situ hybridization, and FLpter values have been determined. The map therefore fully integrates physical, genic, genetic, and cytogenetic information and should provide a robust framework for the rapid and accurate assignment of new markers at a high level of resolution in this region of 11p.
Genomics | 1992
Isabel M. Hanson; Anne Seawright; Veronica van Heyningen
To map in detail the human gene for brain derived neurotrophic factor (BDNF) we have used a PCR-based assay to amplify the gene from somatic cell hybrids containing human chromosome 11 with deletion or translocation breakpoints in the WAGR region. The BDNF gene maps between the FSHB and HVBS1 loci, an interval of approximately 4 Mb at the boundary of 11p13 and 11p14.
Mammalian Genome | 2002
Dirk A. Kleinjan; Anne Seawright; Greg Elgar; Veronica van Heyningen
Abstract. The human eye anomaly aniridia is normally caused by intragenic mutations of PAX6. Several cases of aniridia are, however, associated with chromosomal rearrangements that leave the PAX6 gene intact. We have identified and characterized a novel gene, PAXNEB (C11orf19), downstream (telomeric) of PAX6. Sequence analysis, including interspecies comparisons, show this gene to consist of 10 exons, with an unusually large final intron spanning 134 kb in human and 18 kb in Fugu. This intron is disrupted by each chromosomal rearrangement. The 2-kb PAXNEB transcript, encoding a 424-amino acid protein, is expressed in all cell lines tested. The homologous mouse cDNA is broadly expressed in mouse embryos. PAXNEB is highly conserved from mammals to fish, with some regions of the protein showing conservation to invertebrates, yeast, and plants. The possible role of PAXNEB in aniridia was assessed. Using a transgenic mouse model, we show that the aniridia phenotype of the chromosomal rearrangement cases is not due to the heterozygous loss of PAXNEB function.
American Journal of Human Genetics | 2016
Meriel McEntagart; Kathleen A. Williamson; Jacqueline K. Rainger; Ann P. Wheeler; Anne Seawright; Elfride De Baere; Hannah Verdin; L. Therese Bergendahl; Alan J. Quigley; Joe Rainger; Abhijit Dixit; Ajoy Sarkar; Eduardo López Laso; Rocío Sánchez-Carpintero; Jesus Barrio; Pierre Bitoun; Trine Prescott; Ruth Riise; Shane McKee; Jackie Cook; Lisa McKie; Berten Ceulemans; Françoise Meire; I. Karen Temple; Fabienne Prieur; Jonathan Williams; Penny Clouston; Andrea H. Németh; Siddharth Banka; Hemant Bengani
Gillespie syndrome (GS) is characterized by bilateral iris hypoplasia, congenital hypotonia, non-progressive ataxia, and progressive cerebellar atrophy. Trio-based exome sequencing identified de novo mutations in ITPR1 in three unrelated individuals with GS recruited to the Deciphering Developmental Disorders study. Whole-exome or targeted sequence analysis identified plausible disease-causing ITPR1 mutations in 10/10 additional GS-affected individuals. These ultra-rare protein-altering variants affected only three residues in ITPR1: Glu2094 missense (one de novo, one co-segregating), Gly2539 missense (five de novo, one inheritance uncertain), and Lys2596 in-frame deletion (four de novo). No clinical or radiological differences were evident between individuals with different mutations. ITPR1 encodes an inositol 1,4,5-triphosphate-responsive calcium channel. The homo-tetrameric structure has been solved by cryoelectron microscopy. Using estimations of the degree of structural change induced by known recessive- and dominant-negative mutations in other disease-associated multimeric channels, we developed a generalizable computational approach to indicate the likely mutational mechanism. This analysis supports a dominant-negative mechanism for GS variants in ITPR1. In GS-derived lymphoblastoid cell lines (LCLs), the proportion of ITPR1-positive cells using immunofluorescence was significantly higher in mutant than control LCLs, consistent with an abnormality of nuclear calcium signaling feedback control. Super-resolution imaging supports the existence of an ITPR1-lined nucleoplasmic reticulum. Mice with Itpr1 heterozygous null mutations showed no major iris defects. Purkinje cells of the cerebellum appear to be the most sensitive to impaired ITPR1 function in humans. Iris hypoplasia is likely to result from either complete loss of ITPR1 activity or structure-specific disruption of multimeric interactions.
Genomics | 1989
Wendy A. Bickmore; David J. Porteous; Sheila Christie; Anne Seawright; Judy M. Fletcher; John C. Maule; P. Couillin; Claudine Junien; Nicholas D. Hastie; Veronica van Heyningen
We have isolated a DNA segment absent from all the constitutionally deleted chromosomes 11 of our patients with Wilms tumor. This marker separates two balanced translocations that break in band 11p13: the distal one associated with aniridia (AN2), and the proximal one with genitourinary dysplasia (GUD). The GUD breakpoint maps within the smallest region of overlap (SRO) for the Wilms tumor (WT) gene locus, thus strengthening the previous suggestion of an association between Wilms tumor and other abnormalities of the genitourinary system. The 11p13 translocation breakpoint associated with T-cell acute lymphatic leukemia (T-ALL) is centromeric to the SRO and separated from the WT locus by at least one known gene. This region of the human genome (11p13) is rich in CpG islands that potentially identify genes, some of which may be involved in the various phenotypes associated with the WAGR syndrome. This is consistent with the proposition that the majority of human genes are in G-negative bands.
Human Genetics | 1986
Patricia A. Boyd; Veronica van Heyningen; Anne Seawright; György Fekete; Nicholas D. Hastie
SummaryCatalase is known to map at chromosome 11p13. It is one of the closest known markers to the WAGR locus. Restriction fragment length polymorphisms (RFLP) of the catalase gene may be invaluable for studying rearrangements in somatic tumours, linkage in cases of familial Wilms tumour, and the relationship between sporadic and familial aniridia. We describe a catalase RFLP with two different enzymes and use these polymorphisms to exclude deletion of the catalase gene in patients with sporadic aniridia, including one who is known to have a deletion and another suspected of having a deletion.
Molecular Biology of the Cell | 2014
Ioannis Kasioulis; Heather M. Syred; Peri Tate; Andrew J. Finch; Joseph Shaw; Anne Seawright; Matthew Fuszard; Catherine H. Botting; Sally L. Shirran; Ian R. Adams; Ian J. Jackson; Veronica van Heyningen; Patricia L. Yeyati
Chromatin remodeling enzymes can also have nonhistone roles, broadening their biological functions. It is shown that Kdm3a binding to cellular chaperones in the cytoplasm is relevant for morphogenetic events leading to infertility in enzymatically null mice. This provides evidence that Kdm3a is not just a histone modifier.
Human Mutation | 2017
Joe Rainger; Kathleen A. Williamson; Dinesh C. Soares; Julia Truch; Dominic Kurian; Gabriele Gillessen-Kaesbach; Anne Seawright; James Prendergast; Mihail Halachev; Ann P. Wheeler; Lynn McTeir; Andrew C. Gill; Veronica van Heyningen; Megan Davey; David Fitzpatrick
Ocular coloboma (OC) is a defect in optic fissure closure and is a common cause of severe congenital visual impairment. Bilateral OC is primarily genetically determined and shows marked locus heterogeneity. Whole‐exome sequencing (WES) was used to analyze 12 trios (child affected with OC and both unaffected parents). This identified de novo mutations in 10 different genes in eight probands. Three of these genes encoded proteins associated with actin cytoskeleton dynamics: ACTG1, TWF1, and LCP1. Proband‐only WES identified a second unrelated individual with isolated OC carrying the same ACTG1 allele, encoding p.(Pro70Leu). Both individuals have normal neurodevelopment with no extra‐ocular signs of Baraitser–Winter syndrome. We found this mutant protein to be incapable of incorporation into F‐actin. The LCP1 and TWF1 variants each resulted in only minor disturbance of actin interactions, and no further plausibly causative variants were identified in these genes on resequencing 380 unrelated individuals with OC.
Nature Genetics | 1992
Tim Jordan; Isabel M. Hanson; Dmitri Zaletayev; Shirley Hodgson; Jane Prosser; Anne Seawright; Nicholas D. Hastie; Veronica van Heyningen