Anne Spurkland
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Spurkland.
American Journal of Human Genetics | 2005
Stephen Sawcer; Maria Ban; Mel Maranian; Tai Wai Yeo; Alastair Compston; Andrew Kirby; Mark J. Daly; De Jager Pl; Emily Walsh; Eric S. Lander; John D. Rioux; David A. Hafler; Adrian J. Ivinson; Jacqueline Rimmler; Simon G. Gregory; Silke Schmidt; Margaret A. Pericak-Vance; Eva Åkesson; Jan Hillert; Pameli Datta; Annette Bang Oturai; Lars P. Ryder; Hanne F. Harbo; Anne Spurkland; Kjell-Morten Myhr; Mikko Laaksonen; David R. Booth; Robert Heard; Graeme J. Stewart; Robin Lincoln
To provide a definitive linkage map for multiple sclerosis, we have genotyped the Illumina BeadArray linkage mapping panel (version 4) in a data set of 730 multiplex families of Northern European descent. After the application of stringent quality thresholds, data from 4,506 markers in 2,692 individuals were included in the analysis. Multipoint nonparametric linkage analysis revealed highly significant linkage in the major histocompatibility complex (MHC) on chromosome 6p21 (maximum LOD score [MLS] 11.66) and suggestive linkage on chromosomes 17q23 (MLS 2.45) and 5q33 (MLS 2.18). This set of markers achieved a mean information extraction of 79.3% across the genome, with a Mendelian inconsistency rate of only 0.002%. Stratification based on carriage of the multiple sclerosis-associated DRB1*1501 allele failed to identify any other region of linkage with genomewide significance. However, ordered-subset analysis suggested that there may be an additional locus on chromosome 19p13 that acts independent of the main MHC locus. These data illustrate the substantial increase in power that can be achieved with use of the latest tools emerging from the Human Genome Project and indicate that future attempts to systematically identify susceptibility genes for multiple sclerosis will have to involve large sample sizes and an association-based methodology.
The EMBO Journal | 2005
Taro Matsumoto; Svante Bohman; Johan Dixelius; Tone Berge; Anna Dimberg; Peetra U. Magnusson; Ling Wang; Charlotte Wikner; Jian Hua Qi; Christer Wernstedt; Jiong Wu; Skjalg Bruheim; Hideo Mugishima; Debrabata Mukhopadhyay; Anne Spurkland; Lena Claesson-Welsh
Vascular endothelial growth factor receptor‐2 (VEGFR‐2) activation by VEGF‐A is essential in vasculogenesis and angiogenesis. We have generated a pan‐phosphorylation site map of VEGFR‐2 and identified one major tyrosine phosphorylation site in the kinase insert (Y951), in addition to two major sites in the C‐terminal tail (Y1175 and Y1214). In developing vessels, phosphorylation of Y1175 and Y1214 was detected in all VEGFR‐2‐expressing endothelial cells, whereas phosphorylation of Y951 was identified in a subset of vessels. Phosphorylated Y951 bound the T‐cell‐specific adapter (TSAd), which was expressed in tumor vessels. Mutation of Y951 to F and introduction of phosphorylated Y951 peptide or TSAd siRNA into endothelial cells blocked VEGF‐A‐induced actin stress fibers and migration, but not mitogenesis. Tumor vascularization and growth was reduced in TSAd‐deficient mice, indicating a critical role of Y951‐TSAd signaling in pathological angiogenesis.
Genes and Immunity | 2009
David R. Booth; Robert Heard; Graeme J. Stewart; An Goris; Rita Dobosi; Bénédicte Dubois; Åslaug R. Lorentzen; Elisabeth G. Celius; Hanne F. Harbo; Anne Spurkland; Tomas Olsson; Ingrid Kockum; Jenny Link; Jan Hillert; Maria Ban; Amie Baker; Stephen Sawcer; Alastair Compston; Tania Mihalova; Richard C. Strange; Clive Hawkins; Gillian Ingram; Neil Robertson; Philip L. De Jager; David A. Hafler; Lisa F. Barcellos; Adrian J. Ivinson; Margaret A. Pericak-Vance; Jorge R. Oksenberg; Stephen L. Hauser
Familial clustering of autoimmune disease is well recognized and raises the possibility that some susceptibility genes may predispose to autoimmunity in general. In light of this observation, it might be expected that some of the variants of established relevance in one autoimmune disease may also be relevant in other related conditions. On the basis of this hypothesis, we tested seven single nucleotide polymorphisms (SNPs) that are known to be associated with type I diabetes in a large multiple sclerosis data set consisting of 2369 trio families, 5737 cases and 10 296 unrelated controls. Two of these seven SNPs showed evidence of association with multiple sclerosis; that is rs12708716 from the CLEC16A gene (P=1.6 × 10−16) and rs763361 from the CD226 gene (P=5.4 × 10−8). These findings thereby identify two additional multiple sclerosis susceptibility genes and lend support to the notion of autoimmune susceptibility genes.
Human Immunology | 1991
Anne Spurkland; Kjersti S. Rønningen; Bodvar Vandvik; Erik Thorsby; Frode Vartdal
Serologic DR typing and genomic DRB1, DQA1, DQB1, DPA1, and DPB1 typing using sequence-specific oligonucleotides were performed in 69 multiple sclerosis (MS) patients and 181 healthy controls on in vitro amplified DNA. The frequencies of DR2 as well as the DR2-associated DQA1*0102 and DQB1*0602 alleles were increased whereas DR7 was decreased among MS patients. The distribution of DR4 subtypes as well as DP alleles were similar in patients and healthy controls. All but one of 23 DR4-positive MS patients carried the DQB1*0302 allele, whereas five of five DR7-positive MS patients carried the DQB1*0303 allele. Of the MS patients, 99% compared to 79% of the controls carried DQA1 alleles encoding glutamine at residue 34, while 97% of the MS patients compared to 72% of the controls carried DQB1 alleles encoding DQ beta chains sharing long polymorphic stretches. A combination of such DQA1 and DQB1 alleles was carried by 96% of the MS patients and 60% of the controls, suggesting an association between MS and a combination of particular DQA1 alleles and DQB1 alleles. The corresponding DQ alpha beta heterodimers may have in common an ability to bind a particular peptide.
Human Immunology | 1989
Kjersti S. Rønningen; Thomas Iwe; Trond S. Halstensen; Anne Spurkland; Erik Thorsby
In Caucasoids HLA-DQB1 genes encoding amino acids other than aspartic acid at position 57 of the DQ beta chain (non-Asp-57) are associated with susceptibility to develop insulin-dependent diabetes mellitus (IDDM), while resistance is associated with aspartic acid at this residue (Asp-57). Following amplification of genomic DNA by the polymerase chain reaction, the DQB1 alleles of 87 random Norwegian IDDM patients and 187 healthy controls were investigated with 11 different sequence-specific oligonucleotide probes. Of these patients 82% carried DQB1 alleles encoding non-Asp-57 at both of their DQ beta chains, compared to 27% of the controls (relative risk = 12.2, p less than 0.0001). Sixteen percent of the patients (versus 51% of the controls) were heterozygous Asp-57/non-Asp-57. Two percent of the patients (22% of the controls) were apparently Asp-57 homozygous. The results demonstrate that non-Asp-57 DQ beta chains are associated with susceptibility to develop IDDM but also indicate that the protection associated with DQ beta Asp-57 may not be as dominant as reported by others.
British Journal of Cancer | 1994
Jarle Breivik; Gunn Iren Meling; Anne Spurkland; Torleiv O. Rognum; Gustav Gaudernack
DNA from 251 primary tumours obtained from 123 male and 125 female Norwegian patients with colorectal carcinoma was analysed for the presence of K-ras point mutations at codons 12 and 13. Mutations were found in 99 (39%) of the samples. The frequency of K-ras mutations was significantly related to age and sex of the patients, and to the location of the tumours (overall: P = 0.008). K-ras mutations were much less frequent in colonic tumours from male than female patients at younger ages (< 40 years, odds ratio < 0.014). The low frequency might indicate that a different, ras-independent, pathway to neoplasia is dominating in the colon of younger males. In contrast, older men had more mutations than older women (e.g. 90 years, odds ratio = 5.8). An inverse but less pronounced relationship was seen for rectal tumours. The type of mutation was found to be associated to sex of patient and location of tumour. G-->C transversions accounted for 35% of the mutations in rectal tumours from females, in contrast to only 2.5% in the rest of the material (P = 0.0005). This may indicate that there are specific carcinogens acting in this location.
Human Immunology | 1990
Kjersti S. Rønningen; Anne Spurkland; Gunnar Markussen; Thomas Iwe; Frode Vartdal; Erik Thorsby
We report genomic HLA class II typing of 181 randomly selected Norwegian controls. Seventeen DRB1, 7 DQA1, 10 DQB1, 2 DPA1, and 16 DPB1 alleles were found in the tested population. HLA class II antigen and allele frequencies are given, as well as the distribution of DRB1, DQA1, DQB1 haplotypes. Linkage disequilibrium between some DPB1 alleles and DRB1 and/or DQB1 alleles are also reported.
Journal of Experimental Medicine | 2012
Zuyue Sun; Xiujuan Li; Sara Massena; Simone Kutschera; Narendra Padhan; Laura Gualandi; Vibeke Sundvold-Gjerstad; Karin Gustafsson; Wing Wen Choy; Guangxiang Zang; My Quach; Leif Jansson; Mia Phillipson; Ruhul Abid; Anne Spurkland; Lena Claesson-Welsh
VEGFR2 activates c-Src and induces vascular permeability by binding to the adaptor protein TSAd
American Journal of Human Genetics | 2013
Sergio E. Baranzini; Pouya Khankhanian; Nikolaos A. Patsopoulos; Michael Li; Jim Stankovich; Chris Cotsapas; Helle Bach Søndergaard; Maria Ban; Nadia Barizzone; Laura Bergamaschi; David R. Booth; Dorothea Buck; Paola Cavalla; Elisabeth G. Celius; Manuel Comabella; Giancarlo Comi; Alastair Compston; Isabelle Cournu-Rebeix; Sandra D’Alfonso; Vincent Damotte; Lennox Din; Bénédicte Dubois; Irina Elovaara; Federica Esposito; Bertrand Fontaine; Andre Franke; An Goris; Pierre-Antoine Gourraud; Christiane Graetz; Franca Rosa Guerini
Multiple sclerosis (MS) is an inflammatory CNS disease with a substantial genetic component, originally mapped to only the human leukocyte antigen (HLA) region. In the last 5 years, a total of seven genome-wide association studies and one meta-analysis successfully identified 57 non-HLA susceptibility loci. Here, we merged nominal statistical evidence of association and physical evidence of interaction to conduct a protein-interaction-network-based pathway analysis (PINBPA) on two large genetic MS studies comprising a total of 15,317 cases and 29,529 controls. The distribution of nominally significant loci at the gene level matched the patterns of extended linkage disequilibrium in regions of interest. We found that products of genome-wide significantly associated genes are more likely to interact physically and belong to the same or related pathways. We next searched for subnetworks (modules) of genes (and their encoded proteins) enriched with nominally associated loci within each study and identified those modules in common between the two studies. We demonstrate that these modules are more likely to contain genes with bona fide susceptibility variants and, in addition, identify several high-confidence candidates (including BCL10, CD48, REL, TRAF3, and TEC). PINBPA is a powerful approach to gaining further insights into the biology of associated genes and to prioritizing candidates for subsequent genetic studies of complex traits.
European Journal of Human Genetics | 2009
Maria Ban; An Goris; Åslaug R. Lorentzen; Amie Baker; Tania Mihalova; Gillian Ingram; David R. Booth; Robert Heard; Graeme J. Stewart; Elke Bogaert; Bénédicte Dubois; Hanne F. Harbo; Elisabeth G. Celius; Anne Spurkland; Richard C. Strange; Clive Hawkins; Neil Robertson; Frank Dudbridge; James Wason; Philip L. De Jager; David A. Hafler; John D. Rioux; Adrian J. Ivinson; Jacob L. McCauley; Margaret A. Pericak-Vance; Jorge R. Oksenberg; Stephen L. Hauser; David M. H. Sexton; Jonathan L. Haines; Stephen Sawcer
In a recent genome-wide association study (GWAS) based on 12 374 non-synonymous single nucleotide polymorphisms we identified a number of candidate multiple sclerosis susceptibility genes. Here, we describe the extended analysis of 17 of these loci undertaken using an additional 4234 patients, 2983 controls and 2053 trio families. In the final analysis combining all available data, we found that evidence for association was substantially increased for one of the 17 loci, rs34536443 from the tyrosine kinase 2 (TYK2) gene (P=2.7 × 10−6, odds ratio=1.32 (1.17–1.47)). This single nucleotide polymorphism results in an amino acid substitution (proline to alanine) in the kinase domain of TYK2, which is predicted to influence the levels of phosphorylation and therefore activity of the protein and so is likely to have a functional role in multiple sclerosis.