Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Stary is active.

Publication


Featured researches published by Anne Stary.


Cell | 2002

XPD Mutations Prevent TFIIH-Dependent Transactivation by Nuclear Receptors and Phosphorylation of RARα

Anne Keriel; Anne Stary; Alain Sarasin; Cécile Rochette-Egly; Jean-Marc Egly

Inherited mutations in the XPD subunit of the general transcription/repair factor TFIIH yield the rare genetic disorder Xeroderma pigmentosum (XP), the phenotypes of which cannot be explained solely on the basis of a DNA repair defect. In cells derived from XP-D patients, we observed a reduction of the ligand-dependent transactivation mediated by several nuclear receptors (RARalpha, ERalpha, and AR). We demonstrate that the XPD mutation alters cdk7 function in RARalpha phosphorylation. Transactivation is restored upon overexpression of either the wild-type XPD or the RARalphaS77E (a mutation which mimics phosphorylated RARalpha). Thus, we demonstrate that the cdk7 kinase of TFIIH phosphorylates the nuclear receptor, then allowing ligand-dependent control of the activation of the hormone-responsive genes.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Molecular analysis of mutations in DNA polymerase η in xeroderma pigmentosum-variant patients

Bernard C. Broughton; Agnès Cordonnier; Wim J. Kleijer; Nicolaas G. J. Jaspers; Heather Fawcett; Anja Raams; Victor H. Garritsen; Anne Stary; Marie-Françoise Avril; François Boudsocq; Chikahide Masutani; Fumio Hanaoka; Robert P. P. Fuchs; Alain Sarasin; Alan R. Lehmann

Xeroderma pigmentosum variant (XP-V) cells are deficient in their ability to synthesize intact daughter DNA strands after UV irradiation. This deficiency results from mutations in the gene encoding DNA polymerase η, which is required for effecting translesion synthesis (TLS) past UV photoproducts. We have developed a simple cellular procedure to identify XP-V cell strains, and have subsequently analyzed the mutations in 21 patients with XP-V. The 16 mutations that we have identified fall into three categories. Many of them result in severe truncations of the protein and are effectively null alleles. However, we have also identified five missense mutations located in the conserved catalytic domain of the protein. Extracts of cells falling into these two categories are defective in the ability to carry out TLS past sites of DNA damage. Three mutations cause truncations at the C terminus such that the catalytic domains are intact, and extracts from these cells are able to carry out TLS. From our previous work, however, we anticipate that protein in these cells will not be localized in the nucleus nor will it be relocalized into replication foci during DNA replication. The spectrum of both missense and truncating mutations is markedly skewed toward the N-terminal half of the protein. Two of the missense mutations are predicted to affect the interaction with DNA, the others are likely to disrupt the three-dimensional structure of the protein. There is a wide variability in clinical features among patients, which is not obviously related to the site or type of mutation.


Journal of Experimental Medicine | 2004

DNA Polymerase η Is Involved in Hypermutation Occurring during Immunoglobulin Class Switch Recombination

Ahmad Faili; Said Aoufouchi; Sandra K. Weller; Françoise Vuillier; Anne Stary; Alain Sarasin; Claude-Agnès Reynaud; Jean-Claude Weill

Base substitutions, deletions, and duplications are observed at the immunoglobulin locus in DNA sequences involved in class switch recombination (CSR). These mutations are dependent upon activation-induced cytidine deaminase (AID) and present all the characteristics of the ones observed during V gene somatic hypermutation, implying that they could be generated by the same mutational complex. It has been proposed, based on the V gene mutation pattern of patients with the cancer-prone xeroderma pigmentosum variant (XP-V) syndrome who are deficient in DNA polymerase η (pol η), that this enzyme could be responsible for a large part of the mutations occurring on A/T bases. Here we show, by analyzing switched memory B cells from two XP-V patients, that pol η is also an A/T mutator during CSR, in both the switch region of tandem repeats as well as upstream of it, thus suggesting that the same error-prone translesional polymerases are involved, together with AID, in both processes.


Mutation Research | 1994

Can we predict solar ultraviolet radiation as the causal event in human tumours by analysing the mutation spectra of the p53 gene

Nicolas Dumaz; Anne Stary; Thierry Soussi; Leela Daya-Grosjean; Alain Sarasin

The tumour suppressor gene, p53, has proved to be one of the genes most often modified in human cancers. These alterations consist mainly of point mutations located in the evolutionarily conserved sequences which render the protein inactive for its normal biological functions. In fact the p53 gene presents nearly 300 potential mutation sites whose analysis should enable the correlation of specific mutation spectra with different causal agents in cancer development. In this study we have analysed the mutation spectrum of the p53 gene in skin tumours from normal individuals and repair-deficient xeroderma pigmentosum (XP) patients in comparison with mutations found in internal cancers. Point mutations are mainly GC-->AT transitions in skin tumours (74% in non-XP, 87% in XP), and also to a lesser extent in internal tumours (47%) where, however, they are mainly located at CpG (63%) sequences probably due to the deamination of the unstable 5-MeC. Moreover, mutations are targeted at py-py sequences in over 90% of skin tumours whereas the distribution of mutations in internal malignancies is proportional to the frequency of py-py sites (61%) and other sequences (39%) at mutable sites. Indeed, in XP skin tumours 100% of the mutations are targeted at py-py sequences and 55% of these are tandem CC-->TT transitions considered as a signature of UV-induced lesions. In skin tumours from normal individuals, 14% of the p53 mutations are double mutations and as in XP skin tumours all these are CC-->TT transitions. In contrast, internal tumours rarely contain tandem mutations (0.8%), and of these only 2/14 were CC-->TT transitions. Finally, nearly all (95%) of the mutations in XP are located on the non-transcribed strand while internal or non-XP skin tumours do not show this strand bias. Hence, the mutation spectrum analysed in XP skin tumours also demonstrates for the first time the existence of preferential repair in humans. In conclusion, the specificity of UV-induced p53 mutation spectra in skin tumours shows that this gene is a particularly appropriate candidate for the correlation of mutation spectra with specific damaging agents.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A UV-sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage

Tiziana Nardo; Roberta Oneda; Graciela Spivak; Bruno Vaz; Laurent Mortier; Pierre Thomas; Donata Orioli; Vincent Laugel; Anne Stary; Philip C. Hanawalt; Alain Sarasin; Miria Stefanini

UV-sensitive syndrome (UVSS) is a recently-identified autosomal recessive disorder characterized by mild cutaneous symptoms and defective transcription-coupled repair (TC-NER), the subpathway of nucleotide excision repair (NER) that rapidly removes damage that can block progression of the transcription machinery in actively-transcribed regions of DNA. Cockayne syndrome (CS) is another genetic disorder with sun sensitivity and defective TC-NER, caused by mutations in the CSA or CSB genes. The clinical hallmarks of CS include neurological/developmental abnormalities and premature aging. UVSS is genetically heterogeneous, in that it appears in individuals with mutations in CSB or in a still-unidentified gene. We report the identification of a UVSS patient (UVSS1VI) with a novel mutation in the CSA gene (p.trp361cys) that confers hypersensitivity to UV light, but not to inducers of oxidative damage that are notably cytotoxic in cells from CS patients. The defect in UVSS1VI cells is corrected by expression of the WT CSA gene. Expression of the p.trp361cys-mutated CSA cDNA increases the resistance of cells from a CS-A patient to oxidative stress, but does not correct their UV hypersensitivity. These findings imply that some mutations in the CSA gene may interfere with the TC-NER-dependent removal of UV-induced damage without affecting its role in the oxidative stress response. The differential sensitivity toward oxidative stress might explain the difference between the range and severity of symptoms in CS and the mild manifestations in UVsS patients that are limited to skin photosensitivity without precocious aging or neurodegeneration.


DNA Repair | 2008

ROLE OF DNA POLYMERASES η, ι AND ζ IN UV RESISTANCE AND UV-INDUCED MUTAGENESIS IN A HUMAN CELL LINE.

Quentin Guéranger; Anne Stary; Said Aoufouchi; Ahmad Faili; Alain Sarasin; Claude-Agnès Reynaud; Jean-Claude Weill

Genes coding for DNA polymerases eta, iota and zeta, or for both Pol eta and Pol iota have been inactivated by homologous recombination in the Burkitts lymphoma BL2 cell line, thus providing for the first time the total suppression of these enzymes in a human context. The UV sensitivities and UV-induced mutagenesis on an irradiated shuttle vector have been analyzed for these deficient cell lines. The double Pol eta/iota deficient cell line was more UV sensitive than the Pol eta-deficient cell line and mutation hotspots specific to the Pol eta-deficient context appeared to require the presence of Pol iota, thus strengthening the view that Pol iota is involved in UV damage translesion synthesis and UV-induced mutagenesis. A role for Pol zeta in a damage repair process at late replicative stages is reported, which may explain the drastic UV-sensitivity phenotype observed when this polymerase is absent. A specific mutation pattern was observed for the UV-irradiated shuttle vector transfected in Pol zeta-deficient cell lines, which, in contrast to mutagenesis at the HPRT locus previously reported, strikingly resembled mutations observed in UV-induced skin cancers in humans. Finally, a Pol eta PIP-box mutant (without its PCNA binding domain) could completely restore the UV resistance in a Pol eta deficient cell line, in the absence of UV-induced foci, suggesting, as observed for Pol iota in a Pol eta-deficient background, that TLS may occur without the accumulation of microscopically visible repair factories.


Biochimie | 2002

The genetics of the hereditary xeroderma pigmentosum syndrome

Anne Stary; Alain Sarasin

All living organisms are constantly exposed to endogenous or exogenous agents that can cause damage to the genomic DNA, leading to the loss of stable genetic information. Fortunately, all cells are equipped with numerous classes of DNA repair pathways which are able to correct many kinds of DNA damage such as bulky adducts, oxidative lesions, single- and double-strand breaks and mismah. The importance of these DNA repair processes is attested by the existence of several rare but dramatic hereditary diseases caused by defects in one of their repair pathways. These diseases are usually associated with early onset of malignancies confirming the direct relationship between unrepaired DNA lesions, mutations or chromosomal modifications and cancer incidence. Among these hereditary diseases the UV-hypersensitive ones have been particularly well studied and the xeroderma pigmentosum (XP) is probably the best known syndrome up to now in terms of genetics and biochemistry.


Journal of Investigative Dermatology | 2010

A Prevalent Mutation with Founder Effect in Xeroderma Pigmentosum Group C from North Africa

Nadem Soufir; Cécile Ged; Agnes Bourillon; Frédéric Austerlitz; Cécile Chemin; Anne Stary; Jacques Armier; Daniele Pham; Khadija Khadir; Joelle Roume; Smail Hadj-Rabia; Bakar Bouadjar; Alain Taieb; Hubert de Verneuil; Hakima Benchiki; Bernard Grandchamp; Alain Sarasin

Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder that is associated with an inherited defect of the nucleotide excision repair pathway (NER). In this study, we investigated the involvement of XP genes in 86 XP patients belonging to 66 unrelated families, most of them consanguineous and originating from Maghreb. Sequencing analysis was performed either directly (44 probands) or after having previously characterized the involved XP gene by complementation assay (22 families). XPC and XPA mutations were respectively present in 56/66 and 8/66 probands. Strikingly, we identified the same homozygous frameshift mutation c.1643_1644delTG (p.Val548AlafsX25) in 87% of XP-C patients. Haplotype analysis showed a common founder effect for this mutation in the Mediterranean region, with an estimated age of 50 generations or 1,250 years. Among 7/8 XP-A patients, we found the previously reported nonsense homozygous XPA mutation (p.Arg228X). Six mutations--to our knowledge previously unreported--(five in XPC, one in XPA) were also identified. In conclusion, XPC appears to be the major disease-causing gene concerning xeroderma pigmentosum in North Africa. As the (p.Val548AlafsX25) XPC mutation is responsible for a huge proportion of XP cases, our data imply an obvious simplification of XP molecular diagnosis, at least in North Africa.


European Journal of Human Genetics | 2008

Deletion of 5' sequences of the CSB gene provides insight into the pathophysiology of Cockayne syndrome.

Vincent Laugel; Cecile Dalloz; Anne Stary; Valérie Cormier-Daire; Isabelle Desguerre; Michel Renouil; Alain Fourmaintraux; Renier Vélez-Cruz; Jean-Marc Egly; Alain Sarasin; Hélène Dollfus

Cockayne syndrome is an autosomal recessive neurodegenerative disorder characterized by a specific defect in the repair of UV-induced DNA lesions. Most cases of Cockayne syndrome are caused by mutations in the CSB gene but the pathophysiological mechanisms are poorly understood. We report the clinical and molecular data of two severely affected Cockayne patients with undetectable CSB protein and mRNA. Both patients showed severe growth failure, microcephaly, mental retardation, congenital cataracts, retinal pigmentary degeneration, photosensitivity and died at the ages of 6 and 8 years. UV irradiation assays demonstrated that both patients had the classical DNA repair defect. Genomic DNA sequencing of the CSB gene showed a homozygous deletion involving non-coding exon 1 and upstream regulatory sequences, but none of the coding exons. Functional complementation using a wild-type CSB expression plasmid fully corrected the DNA repair defect in transfected fibroblasts. Horibata et al recently proposed that all type of CSB mutations result in a defect in UV damage repair that is responsible for the photosensitivity observed in the syndrome, but that only truncated CSB polypeptides generated by nonsense mutations have some additional inhibitory functions in transcription or in oxidative damage repair, which are necessary to lead to the other features of the phenotype. Our patients do not fit the proposed paradigm and new hypotheses are required to account for the pathophysiology of Cockayne syndrome, at the crossroads between DNA repair and transcription.


Journal of Immunology | 2009

A Backup Role of DNA Polymerase κ in Ig Gene Hypermutation Only Takes Place in the Complete Absence of DNA Polymerase η

Ahmad Faili; Anne Stary; Frédéric Delbos; Sandra K. Weller; Said Aoufouchi; Alain Sarasin; Jean-Claude Weill; Claude-Agnès Reynaud

Patients with the variant form of xeroderma pigmentosum (XPV) syndrome have a genetic deficiency in DNA polymerase (Pol) η, and display accordingly an increased skin sensitivity to UV light, as well as an altered mutation pattern of their Ig V genes in memory B cells, alteration that consists in a reduced mutagenesis at A/T bases. We previously suggested that another polymerase with a different mutation signature, Pol κ, is used as backup for Ig gene hypermutation in both humans and mice in cases of complete Pol η deficiency, a proposition supported in this study by the analysis of Pol η × Pol κ double-deficient mice. We also describe a new XPV case, in which a splice site mutation of the first noncoding exon results in a decreased mRNA expression, a mRNA that otherwise encodes a normal Pol η protein. Whereas the Pol η mRNA level observed in patient’s fibroblasts is one-twentieth the value of healthy controls, it is only reduced to one-fourth of the normal level in activated B cells. Memory B cells from this patient showed a 50% reduction in A/T mutations, with a spectrum that still displays a strict Pol η signature. Pol η thus appears as a dominant enzyme in hypermutation, its presence precluding the use of a substitute enzyme even in conditions of reduced availability. Such a dominant behavior may explain the lack of Pol κ signature in Ig gene mutations of some XPV patients previously described, for whom residual Pol η activity might exist.

Collaboration


Dive into the Anne Stary's collaboration.

Top Co-Authors

Avatar

Alain Sarasin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annie Benoit

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Leela Daya-Grosjean

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Xavier Quilliet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annabel Quinet

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge