Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Staubitz is active.

Publication


Featured researches published by Anne Staubitz.


Journal of the American Chemical Society | 2010

Catalytic Dehydrocoupling/Dehydrogenation of N-Methylamine-Borane and Ammonia-Borane: Synthesis and Characterization of High Molecular Weight Polyaminoboranes

Anne Staubitz; Matthew E. Sloan; Alasdair P. M. Robertson; Anja Friedrich; Sven Schneider; Paul J. Gates; Jörn Schmedt auf der Günne; Ian Manners

The catalytic dehydrocoupling/dehydrogenation of N-methylamine-borane, MeNH(2)·BH(3) (7), to yield the soluble, high molecular weight poly(N-methylaminoborane) (8a), [MeNH-BH(2)](n) (M(W) > 20 000), has been achieved at 20 °C using Brookharts Ir(III) pincer complex IrH(2)POCOP (5) (POCOP = [μ(3)-1,3-(OPtBu(2))(2)C(6)H(3)]) as a catalyst. The analogous reaction with ammonia-borane, NH(3)·BH(3) (4), gave an insoluble product, [NH(2)-BH(2)](n) (8d), but copolymerization with MeNH(2)·BH(3) gave soluble random copolymers, [MeNH-BH(2)](n)-r-[NH(2)-BH(2)](m) (8b and 8c). The structures of polyaminoborane 8a and copolymers 8b and 8c were further analyzed by ultrahigh resolution electrospray mass spectrometry (ESI-MS), and 8a, together with insoluble homopolymer 8d, was also characterized by (11)B and (1)H solid-state NMR, IR, and wide-angle X-ray scattering (WAXS). The data indicate that 8a-8c are essentially linear, high molecular weight materials and that the insoluble polyaminoborane 8d possesses a similar structure but is of lower molecular weight (ca. 20 repeat units), presumably due to premature precipitation during its formation. The yield and molecular weight of polymer 8a was found to be relatively robust toward the influence of different temperatures, solvents, and adduct concentrations, while higher catalyst loadings led to higher molecular weight materials. It was therefore unexpected that the polymerization of 7 using 5 was found to be a chain-growth rather than a step-growth process, where high molecular weights were already attained at about 40% conversion of 7. The results obtained are consistent with a two stage polymerization mechanism where, first, the Ir catalyst 5 dehydrogenates 7 to afford the monomer MeNH═BH(2) and, second, the same catalyst effects the subsequent polymerization of this species. A wide range of other catalysts based on Ru, Rh, and Pd were also found to be effective for the transformation of 7 to polyaminoborane 8a. For example, polyaminoborane 8a was even isolated from the initial stage of the dehydrocoupling/dehydrogenation of 7 with [Rh(μ-Cl)(1,5-cod)](2) (2) as the catalyst at 20 °C, a reaction reported to give the N,N,N-trimethyl borazine, [MeN-BH](3), under different conditions (dimethoxyethane, 45 °C). The ability to use a variety of catalysts to prepare polyaminoboranes suggests that the synthetic strategy should be applicable to a broad range of amine-borane precursors and is a promising development for this new class of inorganic polymers.


Advanced Materials | 2012

Joining the Un‐Joinable: Adhesion Between Low Surface Energy Polymers Using Tetrapodal ZnO Linkers

Xin Jin; Lars Heepe; Alexander Kovalev; Yogendra Kumar Mishra; Rainer Adelung; Stanislav N. Gorb; Anne Staubitz

Tetrapodal ZnO crystals are used for mechanical interlocking of PTFE and cross-linked PDMS, classically non-adhesive polymers. This novel approach is straightforward and easily applicable and leads to a peel strength that is higher than 200 N m(-1) without chemical modification of the surfaces. The shape of these fillers emerged as a crucial aspect of the interlocking mechanism.


Journal of the American Chemical Society | 2010

Ring-Opening Polymerization of a Galla[1]ferrocenophane: A Gallium-Bridged Polyferrocene with Observable Tacticity

Bidraha Bagh; Joe B. Gilroy; Anne Staubitz; Jens Müller

A gallium-bridged polyferrocene was prepared via spontaneous ring-opening polymerization of a galla[1]ferrocenophane. This organometallic polymer is thermally robust and can be purified and handled under ambient conditions, making it an ideal candidate for incorporation into polymer based materials offering an alternative to existing polyferrocenes. The tBu group pointing toward the polymer backbone serves as a very sensitive NMR probe of the polymer stereochemistry.


Organic Letters | 2012

Chemoselective Cross-Coupling Reactions with Differentiation between Two Nucleophilic Sites on a Single Aromatic Substrate

Julian Linshoeft; Annika C. J. Heinrich; Stephan A. W. Segler; Paul J. Gates; Anne Staubitz

A new thiophene building block, containing both a stannyl group and a boronic ester, was prepared. From this starting material, a general, nucleophile-selective one-pot reaction was developed, exploiting the different reactivities of the Stille and Suzuki-Miyaura cross-coupling reactions. A series of aromatic electrophiles were used to demonstrate the high functional group tolerance.


Chemistry: A European Journal | 2012

“Spontaneous” Ambient Temperature Dehydrocoupling of Aromatic Amine–Boranes

Holger Helten; Alasdair P. M. Robertson; Anne Staubitz; James R. Vance; Mairi F. Haddow; Ian Manners

The dehydrocoupling/dehydrogenation behavior of primary arylamine-borane adducts ArNH(2)⋅BH(3) (3 a-c; Ar = a: Ph, b: p-MeOC(6)H(4), c: p-CF(3)C(6)H(4)) has been studied in detail both in solution at ambient temperature as well as in the solid state at ambient or elevated temperatures. The presence of a metal catalyst was found to be unnecessary for the release of H(2). From reactions of 3 a,b in concentrated solutions in THF at 22 °C over 24 h cyclotriborazanes (ArNH-BH(2))(3) (7 a,b) were isolated as THF adducts, 7 a,b⋅THF, or solvent-free 7 a, which could not be obtained via heating of 3 a-c in the melt. The μ-(anilino)diborane [H(2)B(μ-PhNH)(μ-H)BH(2)] (4 a) was observed in the reaction of 3 a with BH(3)⋅THF and was characterized in situ. The reaction of 3 a with PhNH(2) (2 a) was found to provide a new, convenient method for the preparation of dianilinoborane (PhNH)(2)BH (5 a), which has potential generality. This observation, together with further studies of reactions of 4 a, 5 a, and 7 a,b, provided insight into the mechanism of the catalyst-free ambient temperature dehydrocoupling of 3 a-c in solution. For example, the reaction of 4 a with 5 a yields 6 a and 7 a. It was found that borazines (ArN-BH)(3) (6 a-c) are not simply formed via dehydrogenation of cyclotriborazanes 7 a-c in solution. The transformation of 7 a to 6 a is slowly induced by 5 a and proceeds via regeneration of 3 a. The adducts 3 a-c also underwent rapid dehydrocoupling in the solid state at elevated temperatures and even very slowly at ambient temperature. From aniline-borane derivative 3 c, the linear iminoborane oligomer (p-CF(3)C(6)H(4))N[BH-NH(p-CF(3)C(6)H(4))](2) (11) was obtained. The single-crystal X-ray structures of 3 a-c, 5 a, 7 a, 7 b⋅THF, and 11 are discussed.


Angewandte Chemie | 2014

Highly tin-selective stille coupling: synthesis of a polymer containing a stannole in the main chain.

Julian Linshoeft; Evan J. Baum; Andreas Hussain; Paul J. Gates; Christian Näther; Anne Staubitz

The incorporation of heavier Group 14 element heteroles into semiconducting polymers leads to unusual optoelectronic properties. However, polymers containing stannoles have not been accessible to date. We report a synthetic route to a well-defined, stannole-containing polymer, the first example of this class of π-conjugated polymers. This route was made possible by developing difunctionalized stannole monomers and highly tin-selective Stille coupling reactions that leave the tin in the stannole untouched. Compared to poly(3-n-hexylthiophene), the resulting polymer displays a remarkable bathochromic shift in its absorption.


Macromolecular Rapid Communications | 2014

Challenges and Solutions for Joining Polymer Materials

Xin Jin; Lars Heepe; Rainer Adelung; Stanislav N. Gorb; Anne Staubitz

The different mechanisms contributing to adhesion between two polymer surfaces are summarized and described in individual examples, which represent either seminal works in the field of adhesion science or novel approaches to achieve polymer-polymer adhesion. A further objective of this article is the development of new methodologies to achieve strong adhesion between low surface energy polymers.


Organic Letters | 2013

Dual Selectivity: Electrophile and Nucleophile Selective Cross-Coupling Reactions on a Single Aromatic Substrate

Annika C. J. Heinrich; Birk Thiedemann; Paul J. Gates; Anne Staubitz

The development of a high yielding, both nucleophile and electrophile selective cross-coupling reaction with aromatic rings is presented. The reaction is general with respect to functional groups. Furthermore, the products still contain a boronic ester and a bromide. These two functional groups allow them to be easy-to-prepare, highly complex starting materials for further reactions, avoiding protecting group transformations.


Science Robotics | 2017

Bioinspired photocontrollable microstructured transport device

Emre Kizilkan; Anne Staubitz; Stanislav N. Gorb

A transportation device can be tunably controlled by the ultraviolet actuation of a liquid crystal elastomer. Geckos, which can walk upside down on vertical and underneath horizontal surfaces, owe this ability to the hierarchical structures under their toes. These structures are responsible for substantial adhesion and, at the same time, for quick detachment by mechanical stimulus through leg movements. Inspired by such stimuli-responsive systems in nature, we developed an artificial, photocontrollable microstructured transport device. Through tunable ultraviolet light illumination, the adhesive ability of this bioinspired transport device is reduced up to a factor of 2.7 in terms of adhesive forces and is quickly recovered when the light stimulus ceases. This bioinspired photocontrollable device has been used in a pick-up and drop-down system for transporting planar and three-dimensional solid objects.


Journal of Organic Chemistry | 2014

Reduction of N-allylamides by LiAlH4: unexpected attack of the double bond with mechanistic studies of product and byproduct formation.

Birk Thiedemann; Christin M. L. Schmitz; Anne Staubitz

The reduction of secondary allyl amides with LiAlH4 can lead to a concomitant reduction of the double bond. Previously, an excess of LiAlH4 in hazardous solvents was used for the reduction. This work discusses optimized reaction conditions in tBuOMe as a safe solvent, with only a 1.5-fold excess of LiAlH4, without reduction of the double bond in most cases. (1)H and (2)D NMR spectroscopic studies give evidence for the mechanism of the reduction of the amide as well as the double bond: Amide reduction generally precedes double bond reduction. Sterically hindered allylamides are an exception. They are reduced considerably more slowly at higher temperatures, and double bond reduction is observed before amide reduction has gone to completion.

Collaboration


Dive into the Anne Staubitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge