Anne T. Saber
National Institute of Occupational Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne T. Saber.
Particle and Fibre Toxicology | 2014
Vicki Stone; Stefano Pozzi-Mucelli; Lang Tran; Karin Aschberger; Stefania Sabella; Ulla Vogel; Craig A. Poland; Dominique Balharry; Teresa F. Fernandes; Stefania Gottardo; Steven M. Hankin; Mark G. J. Hartl; Nanna B. Hartmann; Danial Hristozov; Kerstin Hund-Rinke; Helinor Johnston; Antonio Marcomini; Oliver Panzer; Davide Roncato; Anne T. Saber; Håkan Wallin; Janeck J. Scott-Fordsmand
BackgroundTo assess the risk of all nanomaterials (NMs) on a case-by-case basis is challenging in terms of financial, ethical and time resources. Instead a more intelligent approach to knowledge gain and risk assessment is required.MethodsA framework of future research priorities was developed from the accorded opinion of experts covering all major stake holder groups (government, industry, academia, funders and NGOs). It recognises and stresses the major topics of physicochemical characterisation, exposure identification, hazard identification and modelling approaches as key components of the current and future risk assessment of NMs.ResultsThe framework for future research has been developed from the opinions of over 80 stakeholders, that describes the research priorities for effective development of an intelligent testing strategy (ITS) to allow risk evaluation of NMs. In this context, an ITS is a process that allows the risks of NMs to be assessed accurately, effectively and efficiently, thereby reducing the need to test NMs on a case-by-case basis.For each of the major topics of physicochemical characterisation, exposure identification, hazard identification and modelling, key-priority research areas are described via a series of stepping stones, or hexagon diagrams structured into a time perspective. Importantly, this framework is flexible, allowing individual stakeholders to identify where their own activities and expertise are positioned within the prioritisation pathway and furthermore to identify how they can effectively contribute and structure their work accordingly. In other words, the prioritisation hexagon diagrams provide a tool that individual stakeholders can adapt to meet their own particular needs and to deliver an ITS for NMs risk assessment. Such an approach would, over time, reduce the need for testing by increasing the reliability and sophistication of in silico approaches.The manuscript includes an appraisal of how this framework relates to the current risk assessment approaches and how future risk assessment could adapt to accommodate these new approaches. A full report is available in electronic format (pdf) at http://www.nano.hw.ac.uk/research-projects/itsnano.html.ConclusionITS-NANO has delivered a detailed, stakeholder driven and flexible research prioritisation (or strategy) tool, which identifies specific research needs, suggests connections between areas, and frames this in a time-perspective.
Particle and Fibre Toxicology | 2012
Julie A. Bourdon; Anne T. Saber; Nicklas Raun Jacobsen; Keld Alstrup Jensen; Anne Mette Madsen; Jacob Stuart Lamson; Håkan Wallin; Peter Møller; Steffen Loft; Carole L. Yauk; Ulla Vogel
BackgroundWidespread occupational exposure to carbon black nanoparticles (CBNPs) raises concerns over their safety. CBNPs are genotoxic in vitro but less is known about their genotoxicity in various organs in vivo.MethodsWe investigated inflammatory and acute phase responses, DNA strand breaks (SB) and oxidatively damaged DNA in C57BL/6 mice 1, 3 and 28 days after a single instillation of 0.018, 0.054 or 0.162 mg Printex 90 CBNPs, alongside sham controls. Bronchoalveolar lavage (BAL) fluid was analyzed for cellular composition. SB in BAL cells, whole lung and liver were assessed using the alkaline comet assay. Formamidopyrimidine DNA glycosylase (FPG) sensitive sites were assessed as an indicator of oxidatively damaged DNA. Pulmonary and hepatic acute phase response was evaluated by Saa3 mRNA real-time quantitative PCR.ResultsInflammation was strongest 1 and 3 days post-exposure, and remained elevated for the two highest doses (i.e., 0.054 and 0.162 mg) 28 days post-exposure (P < 0.001). SB were detected in lung at all doses on post-exposure day 1 (P < 0.001) and remained elevated at the two highest doses until day 28 (P < 0.05). BAL cell DNA SB were elevated relative to controls at least at the highest dose on all post-exposure days (P < 0.05). The level of FPG sensitive sites in lung was increased throughout with significant increases occurring on post-exposure days 1 and 3, in comparison to controls (P < 0.001-0.05). SB in liver were detected on post-exposure days 1 (P < 0.001) and 28 (P < 0.001). Polymorphonuclear (PMN) cell counts in BAL correlated strongly with FPG sensitive sites in lung (r = 0.88, P < 0.001), whereas no such correlation was observed with SB (r = 0.52, P = 0.08). CBNP increased the expression of Saa3 mRNA in lung tissue on day 1 (all doses), 3 (all doses) and 28 (0.054 and 0.162 mg), but not in liver.ConclusionsDeposition of CBNPs in lung induces inflammatory and genotoxic effects in mouse lung that persist considerably after the initial exposure. Our results demonstrate that CBNPs may cause genotoxicity both in the primary exposed tissue, lung and BAL cells, and in a secondary tissue, the liver.
Nanotoxicology | 2012
Anne T. Saber; Keld Alstrup Jensen; Nicklas Raun Jacobsen; Renie K. Birkedal; Lone Mikkelsen; Peter Møller; Steffen Loft; Håkan Wallin; Ulla Vogel
Abstract Manufactured nanomaterials are projected to be used on a large scale in paints and lacquers. We selected seven commercially interesting materials: Three titanium dioxide-based (two coated rutile; one uncoated anatase), one carbon black (Flamrüss 101), one kaolinite clay, and two silica products, whereas carbon black, Printex 90, was used as reference material. DNA damaging activity and inflammogenicity (pulmonary cell composition and mRNAs) were determined 24 h after intratracheal instillation of a single dose of 54 μg in mice. Greatest inflammation was induced by Printex 90 and uncoated titanium dioxide. The inflammatory potency correlated with instilled surface area (R2 = 0.94) but not with material volume (R2 = 0.17). The coated titanium dioxides induced DNA damage in lung lining fluid cells. The uncoated titanium dioxide was not DNA damaging by the comet assay 24 h after exposure despite being highly inflammogenic. This suggests that inflammation is not a prerequisite to DNA damage in titanium dioxide-based products.
Particle and Fibre Toxicology | 2008
Karin Sørig Hougaard; Keld Alstrup Jensen; Pernille Nordly; Camilla Taxvig; Ulla Vogel; Anne T. Saber; Håkan Wallin
BackgroundResults from epidemiological studies indicate that particulate air pollution constitutes a hazard for human health. Recent studies suggest that diesel exhaust possesses endocrine activity and therefore may affect reproductive outcome. This study in mice aimed to investigate whether exposure to diesel exhaust particles (DEP; NIST 2975) would affect gestation, postnatal development, activity, learning and memory, and biomarkers of transplacental toxicity. Pregnant mice (C57BL/6; BomTac) were exposed to 19 mg/m3 DEP (~1·106 particles/cm3; mass median diameter ≅ 240 nm) on gestational days 9–19, for 1 h/day.ResultsGestational parameters were similar in control and diesel groups. Shortly after birth, body weights of DEP offspring were slightly lower than in controls. This difference increased during lactation, so by weaning the DEP exposed offspring weighed significantly less than the control progeny. Only slight effects of exposure were observed on cognitive function in female DEP offspring and on biomarkers of exposure to particles or genotoxic substances.ConclusionIn utero exposure to DEP decreased weight gain during lactation. Cognitive function and levels of biomarkers of exposure to particles or to genotoxic substances were generally similar in exposed and control offspring. The particle size and chemical composition of the DEP and differences in exposure methods (fresh, whole exhaust versus aged, resuspended DEP) may play a significant role on the biological effects observed in this compared to other studies.
Particle and Fibre Toxicology | 2012
Anne T. Saber; Nicklas Raun Jacobsen; Alicja Mortensen; Józef Szarek; Petra Jackson; Anne Mette Madsen; Keld Alstrup Jensen; Ismo K. Koponen; Gunnar Brunborg; Kristine B. Gutzkow; Ulla Vogel; Håkan Wallin
BackgroundLittle is known of how the toxicity of nanoparticles is affected by the incorporation in complex matrices. We compared the toxic effects of the titanium dioxide nanoparticle UV-Titan L181 (NanoTiO2), pure or embedded in a paint matrix. We also compared the effects of the same paint with and without NanoTiO2.MethodsMice received a single intratracheal instillation of 18, 54 and 162 μg of NanoTiO2 or 54, 162 and 486 μg of the sanding dust from paint with and without NanoTiO2. DNA damage in broncheoalveolar lavage cells and liver, lung inflammation and liver histology were evaluated 1, 3 and 28 days after intratracheal instillation. Printex 90 was included as positive control.ResultsThere was no additive effect of adding NanoTiO2 to paints: Therefore the toxicity of NanoTiO2 was reduced by inclusion into a paint matrix. NanoTiO2 induced inflammation in mice with severity similar to Printex 90. The inflammatory response of NanoTiO2 and Printex 90 correlated with the instilled surface area. None of the materials, except of Printex 90, induced DNA damage in lung lining fluid cells. The highest dose of NanoTiO2 caused DNA damage in hepatic tissue 1 day after intratracheal instillation. Exposure of mice to the dust from paints with and without TiO2 was not associated with hepatic histopathological changes. Exposure to NanoTiO2 or to Printex 90 caused slight histopathological changes in the liver in some of the mice at different time points.ConclusionsPulmonary inflammation and DNA damage and hepatic histopathology were not changed in mice instilled with sanding dust from NanoTiO2 paint compared to paint without NanoTiO2. However, pure NanoTiO2 caused greater inflammation than NanoTiO2 embedded in the paint matrix.
Nanotoxicology | 2012
Anne T. Saber; Ismo K. Koponen; Keld Alstrup Jensen; Nicklas Raun Jacobsen; Lone Mikkelsen; Peter Møller; Steffen Loft; Ulla Vogel; Håkan Wallin
Abstract Nanoparticles are increasingly used in paints and lacquers. Little is known of the toxicity of nanoparticles incorporated in complex matrices and released during different phases of the life cycle. DNA damaging activity and inflammogenicity of sanding dust sampled during standardised sanding of boards painted with paints with and without nanoparticles were determined 24 h after intratracheal instillation of a single dose of 54 μg in mice. Dusts from nanoparticle-containing paints and lacquers did not generate pulmonary inflammation or oxidative stress. Sanding dust from both the nanoparticle-containing and the conventional lacquer and the outdoor acrylic-based reference paint increased the level of DNA strand breaks in bronchoalveolar fluid cells. In conclusion, addition of nanoparticles to paint or lacquers did not increase the potential of sanding dust for causing inflammation, oxidative stress or DNA damage, suggesting that the paint/lacquer matrix is more important as determinant of DNA damage than the nanomaterial.
Toxicology and Applied Pharmacology | 2015
Sarah S. Poulsen; Anne T. Saber; Andrew Williams; Ole Andersen; Carsten Købler; Rambabu Atluri; Maria E. Pozzebon; Stefano P. Mucelli; Monica Simion; David Rickerby; Alicja Mortensen; Petra Jackson; Zdenka O. Kyjovska; Kristian Mølhave; Nicklas Raun Jacobsen; Keld Alstrup Jensen; Carole L. Yauk; Håkan Wallin; Sabina Halappanavar; Ulla Vogel
Multi-walled carbon nanotubes (MWCNTs) are an inhomogeneous group of nanomaterials that vary in lengths, shapes and types of metal contamination, which makes hazard evaluation difficult. Here we present a toxicogenomic analysis of female C57BL/6 mouse lungs following a single intratracheal instillation of 0, 18, 54 or 162 μg/mouse of a small, curled (CNT(Small), 0.8 ± 0.1 μm in length) or large, thick MWCNT (CNT(Large), 4 ± 0.4 μm in length). The two MWCNTs were extensively characterized by SEM and TEM imaging, thermogravimetric analysis, and Brunauer-Emmett-Teller surface area analysis. Lung tissues were harvested 24h, 3 days and 28 days post-exposure. DNA microarrays were used to analyze gene expression, in parallel with analysis of bronchoalveolar lavage fluid, lung histology, DNA damage (comet assay) and the presence of reactive oxygen species (dichlorodihydrofluorescein assay), to profile and characterize related pulmonary endpoints. Overall changes in global transcription following exposure to CNT(Small) or CNT(Large) were similar. Both MWCNTs elicited strong acute phase and inflammatory responses that peaked at day 3, persisted up to 28 days, and were characterized by increased cellular influx in bronchoalveolar lavage fluid, interstitial pneumonia and gene expression changes. However, CNT(Large) elicited an earlier onset of inflammation and DNA damage, and induced more fibrosis and a unique fibrotic gene expression signature at day 28, compared to CNT(Small). The results indicate that the extent of change at the molecular level during early response phases following an acute exposure is greater in mice exposed to CNT(Large), which may eventually lead to the different responses observed at day 28.
Toxicology and Applied Pharmacology | 2013
Mainul Husain; Anne T. Saber; Charles Guo; Nicklas Raun Jacobsen; Keld Alstrup Jensen; Carole L. Yauk; Andrew Williams; Ulla Vogel; Håkan Wallin; Sabina Halappanavar
We investigated gene expression, protein synthesis, and particle retention in mouse lungs following intratracheal instillation of varying doses of nano-sized titanium dioxide (nano-TiO2). Female C57BL/6 mice were exposed to rutile nano-TiO2 via single intratracheal instillations of 18, 54, and 162μg/mouse. Mice were sampled 1, 3, and 28days post-exposure. The deposition of nano-TiO2 in the lungs was assessed using nanoscale hyperspectral microscopy. Biological responses in the pulmonary system were analyzed using DNA microarrays, pathway-specific real-time RT-PCR (qPCR), gene-specific qPCR arrays, and tissue protein ELISA. Hyperspectral mapping showed dose-dependent retention of nano-TiO2 in the lungs up to 28days post-instillation. DNA microarray analysis revealed approximately 3000 genes that were altered across all treatment groups (±1.3 fold; p<0.1). Several inflammatory mediators changed in a dose- and time-dependent manner at both the mRNA and protein level. Although no influx of neutrophils was detected at the low dose, changes in the expression of several genes and proteins associated with inflammation were observed. Resolving inflammation at the medium dose, and lack of neutrophil influx in the lung fluid at the low dose, were associated with down-regulation of genes involved in ion homeostasis and muscle regulation. Our gene expression results imply that retention of nano-TiO2 in the absence of inflammation over time may potentially perturb calcium and ion homeostasis, and affect smooth muscle activities.
Particle and Fibre Toxicology | 2011
Lone Mikkelsen; Majid Sheykhzade; Keld Alstrup Jensen; Anne T. Saber; Nicklas Raun Jacobsen; Ulla Vogel; Håkan Wallin; Steffen Loft; Peter Møller
BackgroundThere is growing evidence that exposure to small size particulate matter increases the risk of developing cardiovascular disease.MethodsWe investigated plaque progression and vasodilatory function in apolipoprotein E knockout (ApoE-/-) mice exposed to TiO2. ApoE-/- mice were intratracheally instilled (0.5 mg/kg bodyweight) with rutile fine TiO2 (fTiO2, 288 nm), photocatalytic 92/8 anatase/rutile TiO2 (pTiO2, 12 nm), or rutile nano TiO2 (nTiO2, 21.6 nm) at 26 and 2 hours before measurement of vasodilatory function in aorta segments mounted in myographs. The progression of atherosclerotic plaques in aorta was assessed in mice exposed to nanosized TiO2 (0.5 mg/kg bodyweight) once a week for 4 weeks. We measured mRNA levels of Mcp-1, Mip-2, Vcam-1, Icam-1 and Vegf in lung tissue to assess pulmonary inflammation and vascular function. TiO2-induced alterations in nitric oxide (NO) production were assessed in human umbilical vein endothelial cells (HUVECs).ResultsThe exposure to nTiO2 was associated with a modest increase in plaque progression in aorta, whereas there were unaltered vasodilatory function and expression levels of Mcp-1, Mip-2, Vcam-1, Icam-1 and Vegf in lung tissue. The ApoE-/- mice exposed to fine and photocatalytic TiO2 had unaltered vasodilatory function and lung tissue inflammatory gene expression. The unaltered NO-dependent vasodilatory function was supported by observations in HUVECs where the NO production was only increased by exposure to nTiO2.ConclusionRepeated exposure to nanosized TiO2 particles was associated with modest plaque progression in ApoE-/- mice. There were no associations between the pulmonary TiO2 exposure and inflammation or vasodilatory dysfunction.
Toxicological Sciences | 2012
Julie A. Bourdon; Sabina Halappanavar; Anne T. Saber; Nicklas Raun Jacobsen; Andrew Williams; Håkan Wallin; Ulla Vogel; Carole L. Yauk
Global pulmonary and hepatic messenger RNA profiles in adult female C57BL/6 mice intratracheally instilled with carbon black nanoparticles (NPs) (Printex 90) were analyzed to identify biological perturbations underlying systemic responses to NP exposure. Tissue gene expression changes were profiled 1, 3, and 28 days following exposure to 0.018, 0.054, and 0.162 mg Printex 90 alongside controls. Pulmonary response was marked by increased expression of inflammatory markers and acute phase response (APR) genes that persisted to day 28 at the highest exposure dose. Genes in the 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase pathway were increased, and those involved in cholesterol efflux were decreased at least at the highest dose on days 1 and 3. Hepatic responses mainly consisted of the HMG-CoA reductase pathway on days 1 (high dose) and 28 (all doses). Protein analysis in tissues and plasma of 0.162 mg Printex 90–exposed mice relative to control revealed an increase in plasma serum amyloid A on days 1 and 28 (p < 0.05), decreases in plasma high-density lipoprotein on days 3 and 28, an increase in plasma low-density lipoprotein on day 28 (p < 0.05), and marginal increases in total hepatic cholesterol on day 28 (p = 0.06). The observed changes are linked to APR. Although further research is needed to establish links between observations and the onset and progression of systemic disorders, the present study demonstrates the ability of NPs to induce systemic effects.