Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne Tscherter is active.

Publication


Featured researches published by Anne Tscherter.


Neuron | 2005

Nigrostriatal Dopaminergic Deficits and Hypokinesia Caused by Inactivation of the Familial Parkinsonism-Linked Gene DJ-1

Matthew S. Goldberg; Antonio Pisani; Marian Haburcak; Timothy A. Vortherms; Tohru Kitada; Cinzia Costa; Youren Tong; Giuseppina Martella; Anne Tscherter; Andrea Martins; Giorgio Bernardi; Bryan L. Roth; Emmanuel N. Pothos; Paolo Calabresi; Jie Shen

The manifestations of Parkinsons disease are caused by reduced dopaminergic innervation of the striatum. Loss-of-function mutations in the DJ-1 gene cause early-onset familial parkinsonism. To investigate a possible role for DJ-1 in the dopaminergic system, we generated a mouse model bearing a germline disruption of DJ-1. Although DJ-1(-/-) mice had normal numbers of dopaminergic neurons in the substantia nigra, evoked dopamine overflow in the striatum was markedly reduced, primarily as a result of increased reuptake. Nigral neurons lacking DJ-1 were less sensitive to the inhibitory effects of D2 autoreceptor stimulation. Corticostriatal long-term potentiation was normal in medium spiny neurons of DJ-1(-/-) mice, but long-term depression (LTD) was absent. The LTD deficit was reversed by treatment with D2 but not D1 receptor agonists. Furthermore, DJ-1(-/-) mice displayed hypoactivity in the open field. Collectively, our findings suggest an essential role for DJ-1 in dopaminergic physiology and D2 receptor-mediated functions.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice

Tohru Kitada; Antonio Pisani; Douglas R. Porter; Hiroo Yamaguchi; Anne Tscherter; Giuseppina Martella; Paola Bonsi; Chen Zhang; Emmanuel N. Pothos; Jie Shen

Parkinsons disease (PD) is characterized by the selective vulnerability of the nigrostriatal dopaminergic circuit. Recently, loss-of-function mutations in the PTEN-induced kinase 1 (PINK1) gene have been linked to early-onset PD. How PINK1 deficiency causes dopaminergic dysfunction and degeneration in PD patients is unknown. Here, we investigate the physiological role of PINK1 in the nigrostriatal dopaminergic circuit through the generation and multidisciplinary analysis of PINK1−/− mutant mice. We found that numbers of dopaminergic neurons and levels of striatal dopamine (DA) and DA receptors are unchanged in PINK1−/− mice. Amperometric recordings, however, revealed decreases in evoked DA release in striatal slices and reductions in the quantal size and release frequency of catecholamine in dissociated chromaffin cells. Intracellular recordings of striatal medium spiny neurons, the major dopaminergic target, showed specific impairments of corticostriatal long-term potentiation and long-term depression in PINK1−/− mice. Consistent with a decrease in evoked DA release, these striatal plasticity impairments could be rescued by either DA receptor agonists or agents that increase DA release, such as amphetamine or l-dopa. These results reveal a critical role for PINK1 in DA release and striatal synaptic plasticity in the nigrostriatal circuit and suggest that altered dopaminergic physiology may be a pathogenic precursor to nigrostriatal degeneration.


Neuropsychopharmacology | 2007

Endogenous Serotonin Excites Striatal Cholinergic Interneurons via the Activation of 5-HT 2C, 5-HT6, and 5-HT7 Serotonin Receptors: Implications for Extrapyramidal Side Effects of Serotonin Reuptake Inhibitors

Paola Bonsi; Dario Cuomo; Jun B. Ding; Giuseppe Sciamanna; Sasha Ulrich; Anne Tscherter; Giorgio Bernardi; D. James Surmeier; Antonio Pisani

The striatum is richly innervated by serotonergic afferents from the raphe nucleus. We explored the effects of this input on striatal cholinergic interneurons from rat brain slices, by means of both conventional intracellular and whole-cell patch-clamp recordings. Bath-applied serotonin (5-HT, 3–300 μM), induced a dose-dependent membrane depolarization and increased the rate of spiking. This effect was mimicked by the 5-HT reuptake blockers citalopram and fluvoxamine. In voltage-clamped neurons, 5-HT induced an inward current, whose reversal potential was close to the K+ equilibrium potential. Accordingly, the involvement of K+ channels was confirmed either by increasing extracellular K+ concentration and by blockade of K+ channels with barium. Single-cell reverse transcriptase-polymerase chain reaction (RT-PCR) profiling demonstrated the presence of 5-HT2C, 5-HT6, and 5-HT7 receptor mRNAs in identified cholinergic interneurons. The depolarization/inward current induced by 5-HT was partially mimicked by the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodoamphetamine and antagonized by both ketanserin and the selective 5-HT2C antagonist RS102221, whereas the selective 5-HT3 and 5-HT4 receptor antagonists tropisetron and RS23597-190 had no effect. The depolarizing response to 5-HT was also reduced by the selective 5-HT6 and 5-HT7 receptor antagonists SB258585 and SB269970, respectively, and mimicked by the 5-HT7 agonist, 5-CT. Accordingly, activation of either 5-HT6 or 5-HT7 receptor induced an inward current. The 5-HT response was attenuated by U73122, blocker of phospholipase C, and by SQ22,536, an inhibitor of adenylyl cyclase. These results suggest that 5-HT released by serotonergic fibers originating in the raphe nuclei has a potent excitatory effect on striatal cholinergic interneurons.


Journal of Neurochemistry | 2009

Impaired dopamine release and synaptic plasticity in the striatum of Parkin−/− mice

Tohru Kitada; Antonio Pisani; Maha Karouani; Marian Haburcak; Giuseppina Martella; Anne Tscherter; Paola Platania; Bei Wu; Emmanuel N. Pothos; Jie Shen

Parkin is the most common causative gene of juvenile and early‐onset familial Parkinson’s diseases and is thought to function as an E3 ubiquitin ligase in the ubiquitin‐proteasome system. However, it remains unclear how loss of Parkin protein causes dopaminergic dysfunction and nigral neurodegeneration. To investigate the pathogenic mechanism underlying these mutations, we used parkin−/− mice to study its physiological function in the nigrostriatal circuit. Amperometric recordings showed decreases in evoked dopamine release in acute striatal slices of parkin−/− mice and reductions in the total catecholamine release and quantal size in dissociated chromaffin cells derived from parkin−/− mice. Intracellular recordings of striatal medium spiny neurons revealed impairments of long‐term depression and long‐term potentiation in parkin−/− mice, whereas long‐term potentiation was normal in the Schaeffer collateral pathway of the hippocampus. Levels of dopamine receptors and dopamine transporters were normal in the parkin−/− striatum. These results indicate that Parkin is involved in the regulation of evoked dopamine release and striatal synaptic plasticity in the nigrostriatal pathway, and suggest that impairment in evoked dopamine release may represent a common pathophysiological change in recessive parkinsonism.


Biological Psychiatry | 2005

Abnormal sensitivity to cannabinoid receptor stimulation might contribute to altered gamma-aminobutyric acid transmission in the striatum of R6/2 Huntington's disease mice

Diego Centonze; Silvia Rossi; Chiara Prosperetti; Anne Tscherter; Giorgio Bernardi; Mauro Maccarrone; Paolo Calabresi

BACKGROUND One of the earliest neurochemical alterations observed in both Huntingtons disease (HD) patients and HD animal models is the dysregulation of the endocannabinoid system, an alteration that precedes the development of identifiable striatal neuropathology. How this alteration impacts striatal synaptic transmission is unknown. METHODS We measured the effects of cannabinoid receptor stimulation on gamma-aminobutyric acid (GABA)-ergic synaptic currents recorded from striatal neurons of R6/2 HD mice in the early phase of their disease. RESULTS The sensitivity of striatal GABA synapses to cannabinoid receptor stimulation is severely impaired in R6/2 HD mice. In particular, whereas in control animals activation of cannabinoid CB1 receptors results in a significant inhibition of both evoked and spontaneous GABA-mediated synaptic events by a presynaptic mechanism, in R6/2 mice this treatment fails to reduce GABA currents but causes, in contrast, a slight increase of spontaneous inhibitory postsynaptic currents (sIPSCs). CONCLUSIONS Experimental HD was also associated with enhanced frequency of sIPSCs, a result consistent with the conclusion that loss of cannabinoid-mediated control of GABA transmission might contribute to hyperactivity of GABA synapses in the striatum of HD mice. Accordingly, spontaneous excitatory postsynaptic currents, which were not upregulated in R6/2 mice, were still sensitive to cannabinoid receptor stimulation.


Neurobiology of Disease | 2009

Impaired striatal D2 receptor function leads to enhanced GABA transmission in a mouse model of DYT1 dystonia.

Giuseppe Sciamanna; Paola Bonsi; Annalisa Tassone; Dario Cuomo; Anne Tscherter; Maria Teresa Viscomi; Giuseppina Martella; Nutan Sharma; Giorgio Bernardi; David G. Standaert; Antonio Pisani

DYT1 dystonia is caused by a deletion in a glutamic acid residue in the C-terminus of the protein torsinA, whose function is still largely unknown. Alterations in GABAergic signaling have been involved in the pathogenesis of dystonia. We recorded GABA- and glutamate-mediated synaptic currents from a striatal slice preparation obtained from a mouse model of DYT1 dystonia. In medium spiny neurons (MSNs) from mice expressing human mutant torsinA (hMT), we observed a significantly higher frequency, but not amplitude, of GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature currents (mIPSCs), whereas glutamate-dependent spontaneous excitatory synaptic currents (sEPSCs) were normal. No alterations were found in mice overexpressing normal human torsinA (hWT). To identify the possible sources of the increased GABAergic tone, we recorded GABAergic Fast-Spiking (FS) interneurons that exert a feed-forward inhibition on MSNs. However, both sEPSC and sIPSC recorded from hMT FS interneurons were comparable to hWT and non-transgenic (NT) mice. In physiological conditions, dopamine (DA) D2 receptor act presynaptically to reduce striatal GABA release. Of note, application of the D2-like receptor agonist quinpirole failed to reduce the frequency of sIPSCs in MSNs from hMT as compared to hWT and NT mice. Likewise, the inhibitory effect of quinpirole was lost on evoked IPSCs both in MSNs and FS interneurons from hMT mice. Our findings demonstrate a disinhibition of striatal GABAergic synaptic activity, that can be at least partially attributed to a D2 DA receptor dysfunction.


Neuropharmacology | 2007

Interaction of A2A adenosine and D2 dopamine receptors modulates corticostriatal glutamatergic transmission

Alessandro Tozzi; Anne Tscherter; Vincenzo Belcastro; Michela Tantucci; Cinzia Costa; Barbara Picconi; Diego Centonze; Paolo Calabresi; Franco Borsini

Adenosine and dopamine (DA) strongly modulate the neuronal activity in the striatum by pre- and postsynaptic mechanisms. As several behavioral and molecular studies indicate a functional antagonism between A2A adenosine and D2 DA receptors, compounds that are able to block A2A receptors are of particular interest as antiparkinsonian agents. To study the interaction of A2A and D2 receptors in the striatum, we performed intracellular recordings with sharp microelectrodes and whole-cell patch clamp recordings from spiny neurons in rat corticostriatal slices. The amplitude of the evoked excitatory postsynaptic potentials (EPSPs), as well as the frequency and the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), were affected neither by the A2A receptor antagonists ST1535 and ZM241385, nor by the D2 receptor agonist quinpirole when applied in isolation. However, co-application of quinpirole and ST1535 or ZM241385 significantly reduced the EPSPs amplitude. This inhibitory effect was associated with an increased paired-pulse facilitation suggesting a presynaptic mechanism of action. Accordingly, whole-cell recordings showed that the concomitant activation of D2 receptors and the antagonism of A2A receptors decreased the frequency of sEPSCs without affecting their amplitude. These results suggest that A2A and D2 receptors converge in the control of corticostriatal glutamatergic transmission by exerting an opposite function.


Neurobiology of Disease | 2006

Enhanced sensitivity of DJ-1-deficient dopaminergic neurons to energy metabolism impairment: Role of Na+/K+ ATPase

Antonio Pisani; Giuseppina Martella; Anne Tscherter; Cinzia Costa; Nicola B. Mercuri; Giorgio Bernardi; Jie Shen; Paolo Calabresi

DJ-1 gene mutations lead to an inherited form of early-onset parkinsonism. The function of DJ-1 is unclear, though a neuroprotective role has been postulated. Electrophysiological recordings were made of striatal and dopaminergic nigral neurons both of wild-type (WT) and DJ-1-knockout (DJ-1(-/-)) mice. We assessed the responses of dopaminergic cells to combined oxygen and glucose deprivation (OGD), and to the mitochondrial toxin rotenone. OGD induced a membrane hyperpolarization in nigral neurons from WT mice. Similarly, rotenone hyperpolarized neurons and then a depolarization occurred. In DJ-1(-/-) mice, the OGD-induced hyperpolarization was significantly enhanced. Moreover, rotenone caused a shorter hyperpolarization followed by an irreversible depolarization. To evaluate the involvement of Na+/K+ ATPase, we tested ouabain, a Na+/K+ ATPase inhibitor, on two distinct neuronal subtypes. Compared to WT mice, in dopaminergic neurons from DJ-1(-/-) mice, ouabain induced rapid and irreversible membrane potential changes. Notably, this effect was observed at concentrations that were unable to produce membrane potential shifts on striatal spiny neurons, both from WT and DJ-1(-/-) mice. These findings suggest that DJ-1 loss-of-function enhances vulnerability to energy metabolism alterations, and that nigral neurons are particularly sensitive to Na+/K+ ATPase impairment.


Amino Acids | 2007

Striatal metabotropic glutamate receptors as a target for pharmacotherapy in Parkinson’s disease

Paola Bonsi; D. Cuomo; Barbara Picconi; Giuseppe Sciamanna; Anne Tscherter; Massimo Tolu; Giorgio Bernardi; Paolo Calabresi; Antonio Pisani

Summary.Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by the loss of dopamine (DA)-containing neurons in the substantia nigra pars compacta (SNc). The symptoms are resting tremor, slowness of movement, rigidity and postural instability. Evidence that an imbalance between dopaminergic and cholinergic transmission takes place within the striatum led to the utilization of DA precursors, DA receptor agonists and anticholinergic drugs in the symptomatic therapy of PD. However, upon disease progression the therapy becomes less effective and debilitating effects such as dyskinesias and motor fluctuations appear. Hence, the need for the development of alternative therapeutic strategies has emerged.Several observations in different experimental models of PD suggest that blockade of excitatory amino acid transmission exerts antiparkinsonian effects. In particular, recent studies have focused on metabotropic glutamate receptors (mGluRs). Drugs acting on group I and II mGluRs have indeed been proven useful in ameliorating the parkinsonian symptoms in animal models of PD and therefore might represent promising therapeutic targets. This beneficial effect could be due to the reduction of both glutamatergic and cholinergic transmission. A novel target for drugs acting on mGluRs in PD therapy might be represented by striatal cholinergic interneurons. Indeed, the activation of mGluR2, highly expressed on this cell type, is able to reduce calcium-dependent plateau potentials by interfering with somato-dendritic N-type calcium channel activity, in turn reducing ACh release in the striatum. Similarly, the blockade of both group I mGluR subtypes reduces cholinergic interneuron excitability, and decreases striatal ACh release. Thus, targeting mGluRs located onto cholinergic interneurons might result in a beneficial pharmacological effect in the parkinsonian state.


Experimental Neurology | 2009

Enhanced sensitivity to group II mGlu receptor activation at corticostriatal synapses in mice lacking the familial parkinsonism-linked genes PINK1 or Parkin

G. Martella; P. Platania; D. Vita; G. Sciamanna; D. Cuomo; A. Tassone; Anne Tscherter; Tohru Kitada; Paola Bonsi; Jie Shen; Antonio Pisani

An altered glutamatergic input at corticostriatal synapses has been shown in experimental models of Parkinsons disease (PD). In the present work, we analyzed the membrane and synaptic responses of striatal neurons to metabotropic glutamate (mGlu) receptor activation in two different mouse models of inherited PD, linked to mutations in PINK1 or Parkin genes. Both in PINK1 and Parkin knockout ((-/-)) mice, activation of group I mGlu receptors by 3,5-DHPG caused a membrane depolarization coupled to an increase in firing frequency in striatal cholinergic interneurons that was comparable to the response observed in the respective wild-type (WT) interneurons. The sensitivity to group II and III mGlu receptors was tested on cortically-evoked excitatory postsynaptic potentials (EPSPs) recorded from medium spiny neurons (MSNs). Both LY379268 and L-AP4, agonists for group II and III, respectively, had no effect on intrinsic membrane properties, but dose-dependently reduced the amplitude of corticostriatal EPSPs. However, both in PINK1(-/-) and Parkin(-/-) mice, LY379268, but not L-AP4, exhibited a greater potency as compared to WT in depressing EPSP amplitude. Accordingly, the dose-response curve for the response to LY379268 in both knockout mice was shifted leftward. Moreover, consistent with a presynaptic site of action, both LY379268 and L-AP4 increased the paired-pulse ratio either in PINK1(-/-) and Parkin(-/-) or in WT mice. Acute pretreatment with L-dopa did not rescue the enhanced sensitivity to LY379268. Together, these results suggest that the selective increase in sensitivity of striatal group II mGlu receptors represents an adaptive change in mice in which an altered dopamine metabolism has been documented.

Collaboration


Dive into the Anne Tscherter's collaboration.

Top Co-Authors

Avatar

Antonio Pisani

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giorgio Bernardi

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Giuseppina Martella

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Bonsi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Diego Centonze

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiara Prosperetti

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Tohru Kitada

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge