Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne W. Mudge is active.

Publication


Featured researches published by Anne W. Mudge.


Nature | 2002

A common mechanism of action for three mood-stabilizing drugs

Robin S.B. Williams; Lili Cheng; Anne W. Mudge; Adrian J. Harwood

Lithium, carbamazepine and valproic acid are effective mood-stabilizing treatments for bipolar affective disorder. The molecular mechanisms underlying the actions of these drugs and the illness itself are unknown. Berridge and colleagues suggested that inositol depletion may be the way that lithium works in bipolar affective disorder, but others have suggested that glycogen synthase kinase (GSK3) may be the relevant target. The action of valproic acid has been linked to both inositol depletion and to inhibition of histone deacetylase (HDAC). We show here that all three drugs inhibit the collapse of sensory neuron growth cones and increase growth cone area. These effects do not depend on GSK3 or HDAC inhibition. Inositol, however, reverses the effects of the drugs on growth cones, thus implicating inositol depletion in their action. Moreover, the development of Dictyostelium is sensitive to lithium and to valproic acid, but resistance to both is conferred by deletion of the gene that codes for prolyl oligopeptidase, which also regulates inositol metabolism. Inhibitors of prolyl oligopeptidase reverse the effects of all three drugs on sensory neuron growth cone area and collapse. These results suggest a molecular basis for both bipolar affective disorder and its treatment.


The EMBO Journal | 2004

The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation

Marie C. Harrisingh; Elena Perez-Nadales; David Parkinson; Denise S. Malcolm; Anne W. Mudge; Alison C. Lloyd

Schwann cells are a regenerative cell type. Following nerve injury, a differentiated myelinating Schwann cell can dedifferentiate and regain the potential to proliferate. These cells then redifferentiate during the repair process. This behaviour is important for successful axonal repair, but the signalling pathways mediating the switch between the two differentiation states remain unclear. Sustained activation of the Ras/Raf/ERK cascade in primary cells results in a cell cycle arrest and has been implicated in the differentiation of certain cell types, in many cases acting to promote differentiation. We therefore investigated its effects on the differentiation state of Schwann cells. Surprisingly, we found that Ras/Raf/ERK signalling drives the dedifferentiation of Schwann cells even in the presence of normal axonal signalling. Furthermore, nerve wounding in vivo results in sustained ERK signalling in associated Schwann cells. Elevated Ras signalling is thought to be important in the development of Schwann cell‐derived tumours in neurofibromatosis type 1 patients. Our results suggest that the effects of Ras signalling on the differentiation state of Schwann cells may be important in the pathogenesis of these tumours.


Neuron | 2000

Evidence that Axon-Derived Neuregulin Promotes Oligodendrocyte Survival in the Developing Rat Optic Nerve

Pierre Alain Fernandez; Dean G. Tang; Lili Cheng; Alain Prochiantz; Anne W. Mudge; Martin C. Raff

It was previously shown that newly formed oligodendrocytes depend on axons for their survival, but the nature of the axon-derived survival signal(s) remained unknown. We show here that neuregulin (NRG) supports the survival of purified oligodendrocytes and aged oligodendrocyte precursor cells (OPCs) but not of young OPCs. We demonstrate that axons promote the survival of purified oligodendrocytes and that this effect is inhibited if NRG is neutralized. In the developing rat optic nerve, we provide evidence that delivery of NRG decreases both normal oligodendrocyte death and the extra oligodendrocyte death induced by nerve transection, whereas neutralization of endogenous NRG increases the normal death. These results suggest that NRG is an axon-associated survival signal for developing oligodendrocytes.


Developmental Biology | 1986

Distribution and ontogeny of SP, CGRP, SOM, and VIP in chick sensory and sympathetic ganglia

Helen V. New; Anne W. Mudge

The distribution and ontogeny of four neuropeptides in developing chick lumbosacral sensory and sympathetic ganglia were studied using immunohistochemical techniques. Antibodies to two of these peptides, substance P (SP) and calcitonin gene-related peptide (CGRP), stained small neurons in the medial part of the dorsal root ganglia from embryonic Day 5 and Day 10, respectively, whereas neurons in the lateral part of the ganglia were negative; this distribution persisted throughout development. Both sets of neurons apparently send fibers to the dorsal horn of the spinal cord: SP to laminae I and II, and CGRP to lamina I, suggesting that the SP- and CGRP-positive sensory neurons are nociceptive or thermoreceptive. This correlation between the presence of SP or CGRP in a neuron and a particular functional modality thus provides evidence for a functional distinction between the mediodorsal and ventrolateral zones that are apparent during the development of chick dorsal root ganglia. Moreover, this study suggests that the type of neuron that develops within the dorsal root ganglion correlates with its position within the ganglion. In contrast to SP and CGRP, somatostatin (SOM) and vasoactive intestinal polypeptide (VIP) immunoreactivities were not seen in the lumbosacral sensory ganglia at any stage during development. However, both were present in sympathetic ganglia: SOM from embryonic Day 4.5 and VIP from embryonic Day 10. VIP immunoreactivity persisted throughout development in a large number of sympathetic neurons, but the number of cells with SOM immunoreactivity decreased from embryonic Day 10 onward. SOM therefore appears to be present only transiently in most chick lumbosacral sympathetic cells.


Nature Cell Biology | 2001

Extracellular control of cell size

Ian Conlon; Graham Dunn; Anne W. Mudge; Martin C. Raff

Both cell growth (cell mass increase) and progression through the cell division cycle are required for sustained cell proliferation. Proliferating cells in culture tend to double in mass before each division, but it is not known how growth and division rates are co-ordinated to ensure that cell size is maintained. The prevailing view is that coordination is achieved because cell growth is rate-limiting for cell-cycle progression. Here, we challenge this view. We have investigated the relationship between cell growth and cell-cycle progression in purified rat Schwann cells, using two extracellular signal proteins that are known to influence these cells. We find that glial growth factor (GGF) can stimulate cell-cycle progression without promoting cell growth. We have used this restricted action of GGF to show that, for cultured Schwann cells, cell growth rate alone does not determine the rate of cell-cycle progression and that cell size at division is variable and depends on the concentrations of extracellular signal proteins that stimulate cell-cycle progression, cell growth, or both.


Neuron | 1996

Cultured Schwann Cells Constitutively Express the Myelin Protein P0

Lili Cheng; Anne W. Mudge

It is widely thought that mammalian Schwann cells do not express Po, the major glycoprotein in peripheral myelin, unless they are induced to do so by axonal signals that can be mimicked by agents that trigger cAMP signaling pathways. In contrast, we find that cultured Schwann cells make large amounts of Po without the addition of any axonal-like signal, provided they have not been exposed to serum during the culture process. We also report that glial growth factor/neuregulin inhibits this constitutive Po expression. Myelin basic protein is regulated in a similar way. We suggest that expression of Po by Schwann cells before the onset of myelination may be prevented by inhibitory signals within the nerve, rather than by the absence of a positive signal from axons.


Molecular Brain Research | 2002

The quantification of gene expression in an animal model of brain ischaemia using TaqMan real-time RT-PCR.

Brian C Bond; David Virley; Nigel J. Cairns; A. Jackie Hunter; Gary B.T. Moore; Stephen J. Moss; Anne W. Mudge; Frank S. Walsh; Elena Jazin; Paul Preece

Expression levels of mRNA are commonly measured as a ratio of test to reference gene. The assumption is that reference genes such as beta-actin or cyclophilin are unaffected by treatment and act as steady-state controls. TaqMan real-time RT-PCR was used to test these assumptions in a rat model of cerebral ischaemia (tMCAO). Following measurement of 24 genes, we show that reference genes in this animal model fail the criteria for steady-state controls. Neuronal loss, glial proliferation and an influx of leukocytes into the lesioned brain result in major disturbance to cell populations. The mRNA for reference genes, as for test genes, reflects these changes. Specific mRNA levels vary according to the choice of reference gene to which they are normalised. In the process of resolving reference gene issues, mRNA increases were discovered for leukaemia inhibitory factor, nestin and galanin in rat brain hemispheres affected by ischaemia. Results are reported for a further 21 genes and mathematical and statistical methods are described that allow in this study fraction-fold changes in mRNA to be detected.


Molecular and Cellular Neuroscience | 2009

Prolyl oligopeptidase binds to GAP-43 and functions without its peptidase activity

Elena Di Daniel; Colin P. Glover; Emma Grot; Man K. Chan; Thirza H. Sanderson; Julia H. White; Catherine L. Ellis; Kathleen T. Gallagher; James B. Uney; Julia Thomas; Peter R. Maycox; Anne W. Mudge

Inhibitors of the enzyme prolyl oligopeptidase (PO) improve performance in rodent learning and memory tasks. PO inhibitors are also implicated in the action of drugs used to treat bipolar disorder: they reverse the effects of three mood stabilizers on the dynamic behaviour of neuronal growth cones. PO cleaves prolyl bonds in short peptides, suggesting that neuropeptides might be its brain substrates. PO is located in the cytosol, however, where it would not contact neuropeptides. Here, we show that mice with a targeted PO null-mutation have altered growth cone dynamics. The wild-type phenotype is restored by PO cDNAs encoding either native or a catalytically-dead enzyme. In addition, we show that PO binds to the growth-associated protein GAP-43, which is a key regulator of synaptic plasticity. Taken together, our results show that peptidase activity is not required for PO function in neurons and suggest that PO instead acts by binding to cytosolic proteins that control growth cone and synaptic function.


Molecular and Cellular Neuroscience | 2005

How can the mood stabilizer VPA limit both mania and depression

Lili Cheng; Michael Lumb; László Polgár; Anne W. Mudge

The mood stabilizing drugs commonly used to treat bipolar disorder--lithium, valproic acid (VPA), and carbamazepine (CBZ)--limit the frequency of swings to either manic or depressive states. We previously showed that these drugs all have a common action on cultured neurons, which can be reversed by the addition of either inositol or specific inhibitors of the enzyme prolyl oligopeptidase (PO). Inhibition of PO activity is reported to enhance phosphoinositide (PIns) signaling consistent with the suggestion that mood stabilizers inhibit PIns signaling. We now report that VPA directly inhibits recombinant PO activity, which would have the opposite effect on PIns signaling. This unexpected result suggests a model that could explain the dual action of VPA in stabilizing mood: we propose that euthymic mood is dependent on stable PIns signaling and that VPA may limit mood swings to mania by decreasing PIns signaling, and that it may limit mood swings to depression by inhibiting PO and thus increasing PIns signaling.


Molecular and Cellular Neuroscience | 1998

Control of Schwann Cell Survival and Proliferation: Autocrine Factors and Neuregulins

Lili Cheng; Fred S. Esch; Mark Marchionni; Anne W. Mudge

Postnatal rat Schwann cells secrete factors that prevent the programmed cell death (PCD) of low-density Schwann cells in serum-free culture. These autocrine survival signal(s) do not promote Schwann cell proliferation. Moreover, while NRG and bFGF, which promote proliferation, both rescue a subpopulation of neonatal Schwann cells from PCD, they do not rescue freshly isolated Schwann cells from older animals; other known protein factors tested also do not mimic the autocrine signal. These results suggest that Schwann cells switch their survival dependency around the time of birth from axonal signals such as NRG to autocrine signals. Such an arrangement would be advantageous for the regeneration of peripheral axons following injury. We also compared NRG-induced Schwann cell proliferation using autocrine signals or serum to promote survival. The autocrine signals increase the rate of NRG-stimulated proliferation of low-density Schwann cells in serum-free medium, whereas serum inhibits proliferation by inhibiting both the production of survival signals and the expression of erbB2 and erbB3 receptors; these inhibitions are all reversed by forskolin. In contrast, forskolin has no effect on proliferation when the cells are exposed to high levels of autocrine factors.

Collaboration


Dive into the Anne W. Mudge's collaboration.

Top Co-Authors

Avatar

Lili Cheng

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin C. Raff

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Coombes

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge