Annebel De Vleeschauwer
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annebel De Vleeschauwer.
PLOS ONE | 2009
Annebel De Vleeschauwer; Kalina Atanasova; Steven Van Borm; Thierry van den Berg; Thomas Bruun Rasmussen; Åse Uttenthal; Kristien Van Reeth
Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs) to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal) to compare the pathogenesis of a low pathogenic (LP) H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals.
Vaccine | 2009
Kristien Van Reeth; Debby Braeckmans; Eric Cox; Steven Van Borm; Thierry van den Berg; Bruno Goddeeris; Annebel De Vleeschauwer
Most humans lack virus neutralizing (VN) and haemagglutination inhibition (HI) antibodies to H5N1 avian influenza viruses (AIVs), but cross-reactive neuraminidase inhibition (NI) antibodies and cell-mediated immune (CMI) responses are common. These immune responses result largely from infections with seasonal human H1N1 influenza viruses, but the protective effect of H1N1 infection-immunity against H5N1 infection has never been examined. To this purpose, we have used the pig model of influenza and a low pathogenic (LP) H5N1 AIV. Pigs were inoculated intranasally with sw/Belgium/1/98 (H1N1) 4 weeks before challenge with duck/Minnesota/1525/81 (H5N1). While the viruses failed to cross-react in HI and VN tests, the H1N1 infection induced high levels of H5N1 cross-reactive NI antibodies. Cross-reactive CMI was demonstrated by measurements of lymphoproliferation and IFN-gamma secretion after in vitro restimulation of peripheral blood mononuclear cells. All control pigs showed clinical signs and H5N1 virus isolation from the respiratory tract post-challenge. The H1N1-immune pigs, in contrast, showed a complete clinical protection and only 3 pigs out of 10 were H5N1 virus-positive. In a second and smaller experiment, H1N1 virus infection also conferred cross-protection against a LP H5N2 AIV, while cross-reactive immunity was solely detected in tests for CMI. Our data further support the notion that immunity induced by seasonal human H1N1 influenza virus infection may provide some protection against H5N1 or other H5 AIVs in the absence of neutralizing H5 antibodies. Further studies should reveal whether cross-protection holds against H5N1 viruses that are better adapted to replicate in mammals or with a more distantly related N1.
Vaccine | 2009
Constantinos S. Kyriakis; Annebel De Vleeschauwer; Filip Barbé; Michel Bublot; Kristien Van Reeth
This study investigates the safety, immunogenicity and efficacy of different pox-vector vaccines expressing the haemagglutinin of a highly pathogenic (HP) H5N1 avian influenza virus (AIV) (A/chicken/Indonesia/7/03) in pigs. Pigs were vaccinated twice, with a 4-week interval, with a fowlpox (TROVAC), a canarypox (ALVAC), or a vaccinia (NYVAC) vector vaccine combined with an oil-in-water adjuvant, with the unadjuvanted NYVAC, or left unvaccinated. Six weeks after the second vaccination, all pigs were challenged intra-tracheally with low pathogenic (LP) H5N2 AIV A/chicken/Belgium/150/99. Sera were examined in haemagglutination inhibition (HI) tests against the H5N1 AIV from which the vaccine haemagglutinin derived, the challenge virus and the human A/Vietnam/1194/04 HPAIV. After challenge pigs were compared for H5N2 virus replication in the trachea and 4 lung lobes at 24 or 72h post-challenge. Vaccination was well tolerated by all animals. Antibody titres peaked 2 weeks after the second vaccination and were 2- to 4-fold higher against the vaccine virus than heterologous H5 viruses. The NYVAC and ALVAC adjuvanted vaccines consistently induced higher antibody titres than TROVAC or NYVAC without adjuvant. Following challenge, the H5N2 challenge virus was isolated from all unvaccinated pigs, while 19 out of 21 vaccinates showed complete virological protection. Pox-vector vaccines were safe, immunogenic and efficacious against challenge with a heterologous H5 AIV, offering an alternative to classical inactivated vaccines. It remains to be seen whether they would protect against a swine-adapted H5 virus, which may replicate 100-1000 times better than our challenge virus.
The Journal of Infectious Diseases | 2009
Annebel De Vleeschauwer; Sjouke Van Poucke; Debby Braeckmans; Jan Van Doorsselaere; Kristien Van Reeth
BACKGROUND Pigs are considered to be intermediate hosts for the transmission of avian influenza viruses (AIVs) between birds and humans, but the transmissibility of AIVs among pigs and from pigs to other mammals remains largely unexplored. METHODS In an initial study, we confirmed the replication potential of various low-pathogenic AIVs in pigs and ferrets, which we used as a model for humans. We then examined the transmissibility of 6 selected low-pathogenic AIVs among pigs (by direct contact) and from pigs to ferrets (by air contact). RESULTS Although H1N1 and H3N2 swine influenza viruses spread readily from inoculated pigs to contact pigs and ferrets, evidence for AIV transmission was extremely rare. The fact that infected pigs shed lower amounts of AIVs than of swine influenza viruses may contribute to the reduced transmissibility of AIVs. CONCLUSIONS Our data indicate that swine-adapted influenza viruses spread readily among pigs and from pigs to other susceptible mammalians and support the notion that AIVs undergo genetic adaptation to efficiently cross the species barrier. Our transmission models hold potential to study the factors that lead to the generation of pandemic influenza viruses.
Influenza and Other Respiratory Viruses | 2011
Annebel De Vleeschauwer; Sjouke Van Poucke; Alexander I. Karasin; Christopher W. Olsen; Kristien Van Reeth
Please cite this paper as: De Vleeschauwer et al. (2011) Cross‐protection between antigenically distinct H1N1 swine influenza viruses from Europe and North America. Influenza and Other Respiratory Viruses 5(2), 115–122.
Vaccine | 2012
Annebel De Vleeschauwer; Benoît Baras; Constantinos S. Kyriakis; Valérie Jacob; Camille Planty; Sandra L. Giannini; Sally P. Mossman; Kristien Van Reeth
We used the pig model of influenza to examine the efficacy of an AS03(A)-adjuvanted split H5N1 (A/Indonesia/05/2005) vaccine against challenge with a low pathogenic (LP) H5N1 avian influenza (AI) virus (duck/Minnesota/1525/1981) with only 85% amino acid homology in its HA1. Influenza seronegative pigs were vaccinated twice intramuscularly with adjuvanted vaccine at 3 antigen doses, unadjuvanted vaccine or placebo. All pigs were challenged 4 weeks after the second vaccination and euthanized 2 days later. After 2 vaccinations, all pigs in the adjuvanted vaccine groups had high hemagglutination inhibiting (HI) antibody titers to the vaccine strain (160-640), and lower antibody titers to the A/Vietnam/1194/04 H5N1 strain and to 2 LP H5 viruses with 90-91% amino acid homology to the vaccine strain (20-160). Eight out of 12 pigs had HI titers (10-20) to the challenge virus immediately before challenge. Neuraminidase inhibiting antibodies to the challenge virus were detected in most pigs (7/12) and virus neutralizing antibodies in all pigs. There was no antigen-dose dependent effect on the antibody response among the pigs immunized with adjuvanted H5N1 vaccines. After challenge, these pigs showed a complete clinical protection, reduced lung lesions and a significant protection against virus replication in the respiratory tract. Though the challenge virus showed only moderate replication efficiency in pigs, our study suggests that AS03(A)-adjuvanted H5N1 vaccine may confer a broader protection than generally assumed. The pros and cons of the pig as an H5N1 challenge model are also discussed.
Vaccine | 2015
Annebel De Vleeschauwer; Yu Qiu; Kristien Van Reeth
The human A/Port Chalmers/1/73 (H3N2) influenza virus strain, the supposed ancestor of European H3N2 swine influenza viruses (SIVs), was used in most commercial SIV vaccines in Europe until recently. If manufacturers want to update vaccine strains, they have to perform laborious intratracheal (IT) challenge experiments and demonstrate reduced virus titres in the lungs of vaccinated pigs. We aimed to examine (a) the ability of a Port Chalmers/73-based commercial vaccine to induce cross-protection against a contemporary European H3N2 SIV and serologic cross-reaction against H3N2 SIVs from Europe and North America and (b) the validity of intranasal (IN) challenge and virus titrations of nasal swabs as alternatives for IT challenge and titrations of lung tissue in vaccine potency tests. Pigs were vaccinated with Suvaxyn Flu(®) and challenged by the IT or IN route with sw/Gent/172/08. Post-vaccination sera were examined in haemagglutination-inhibition assays against vaccine and challenge strains and additional H3N2 SIVs from Europe and North America, including an H3N2 variant virus. Tissues of the respiratory tract and nasal swabs were collected 3 days post challenge (DPCh) and from 0-7 DPCh, respectively, and examined by virus titration. Two vaccinations consistently induced cross-reactive antibodies against European H3N2 SIVs from 1998-2012, but minimal or undetectable antibody titres against North American viruses. Challenge virus titres in the lungs, trachea and nasal mucosa of the vaccinated pigs were significantly reduced after both IT and IN challenge. Yet the reduction of virus titres and nasal shedding was greater after IT challenge. The Port Chalmers/73-based vaccine still offered protection against a European H3N2 SIV isolated 35 years later and with only 86.9% amino acid homology in its HA1, but it is unlikely to protect against H3N2 SIVs that are endemic in North America. We use our data to reflect on vaccine strain updates and on the vaccine potency test.
Veterinary Microbiology | 2010
Annebel De Vleeschauwer; Kristien Van Reeth
Although pigs are susceptible to avian influenza viruses (AIV) of different subtypes, the incidence of AIV infections in the field appears to be low. Swine H1N1, H3N2 and H1N2 influenza viruses (SIV) are enzootic worldwide and most pigs have antibodies to 1 or more SIV subtypes. This study aimed to examine whether infection-immunity to H1N1 or H3N2 SIV may (1) protect pigs against subsequent infections with AIV of various haemagglutinin and/or neuraminidase subtypes and/or (2) interfere with the serological diagnosis of AIV infection by haemagglutination inhibition (HI) or virus neutralization (VN) tests. Pigs were inoculated intranasally with an H1N1 or H3N2 SIV or left uninoculated. Four or 6 weeks later all pigs were challenged intranasally with 1 of 3 AIV subtypes (H4N6, H5N2 or H7N1). Fifteen out of 17 challenge control pigs shed the respective AIV for 4-6 days post-inoculation and 16 developed HI and VN antibodies. In contrast, 28 of the 29 SIV-immune pigs did not have detectable AIV shedding. Only 12 SIV-immune pigs developed HI antibodies to the AIV used for challenge and 14 had VN antibodies. Antibody titres to the AIV were low in both control and SIV-immune pigs. Our data show that prior infection of pigs with SIV is a barrier to infection with AIV of unrelated subtypes. Serological screening in regions where SIV is enzootic is only useful when the AIV strain for which the pigs need to be tested is known.
Vaccine | 2018
Annebel De Vleeschauwer; Xiaocui Zhou; David J. Lefebvre; A. Garnier; Fleur Watier; Charly Pignon; Sandrine A. Lacour; Stéphan Zientara; Labib Bakkali-Kassimi; Kris De Clercq; Bernard Klonjkowski
Vaccination is a key element in the control of foot-and-mouth disease (FMD). The majority of the antigenic sites that induce protective immune responses are localized on the FMD virus (FMDV) capsid that is formed by four virus-encoded structural proteins, VP1 to VP4. In the present study, recombinant canine adenovirus type 2 (CAV2)-based FMD vaccines, Cav-P1/3C R° and Cav-VP1 R°, respectively expressing the structural P1 precursor protein along with the non-structural 3C protein or expressing the structural VP1 protein of the FMDV strain O/FRA/1/2001, were evaluated as novel vaccines against FMD. A strong humoral immune response was elicited in guinea pigs (GP) following immunization with Cav-P1/3C R°, while administration of Cav-VP1 R° did not induce a satisfying antibody response in GP or mice. GP were then used as an experimental model for the determination of the protection afforded by the Cav-P1/3C R° vaccine against challenge with the FMDV strain O1 Manisa/Turkey/1969. The Cav-P1/3C R° vaccine protected GP from generalized FMD to a similar extent as a high potency double-oil emulsion O1 Manisa vaccine. The results of the present study show that CAV2-based vector vaccines can express immunogenic FMDV antigens and offer protection against generalized FMD in GP. This suggest that Cav-P1/3C R° FMDV vaccine may protect natural host species from FMD. In combination with an appropriate diagnostic test, the Cav-P1/3C R° FMDV vaccine may also serve as a marker vaccine to differentiate vaccinated from infected animals.
Genome Announcements | 2018
Frank Vandenbussche; Elisabeth Mathijs; Hussaini Gulak Ularamu; David O. Ehizibolo; Andy Haegeman; David J. Lefebvre; Annebel De Vleeschauwer; Steven Van Borm; Kris De Clercq
ABSTRACT The complete genome sequences of 5 foot-and-mouth disease viruses of serotype A are reported here. These viruses originate from outbreaks in northern Nigeria in 2013 to 2015 and belong to the A/AFRICA/G-IV lineage.