Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annegien Broeks is active.

Publication


Featured researches published by Annegien Broeks.


Nature | 2012

The landscape of cancer genes and mutational processes in breast cancer

Philip Stephens; Patrick Tarpey; Helen Davies; Peter Van Loo; Christopher Greenman; David C. Wedge; Serena Nik-Zainal; Sancha Martin; Ignacio Varela; Graham R. Bignell; Lucy R. Yates; Elli Papaemmanuil; David Beare; Adam Butler; Angela Cheverton; John Gamble; Jonathan Hinton; Mingming Jia; Alagu Jayakumar; David Jones; Calli Latimer; King Wai Lau; Stuart McLaren; David J. McBride; Andrew Menzies; Laura Mudie; Keiran Raine; Roland Rad; Michael Spencer Chapman; Jon W. Teague

All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.


PLOS Medicine | 2010

Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies

Fiona Blows; Kristy Driver; Marjanka K. Schmidt; Annegien Broeks; Flora E. van Leeuwen; Jelle Wesseling; Maggie Cheang; Karen A. Gelmon; Torsten O. Nielsen; Carl Blomqvist; Päivi Heikkilä; Tuomas Heikkinen; Heli Nevanlinna; Lars A. Akslen; Louis R. Bégin; William D. Foulkes; Fergus J. Couch; Xianshu Wang; Vicky Cafourek; Janet E. Olson; Laura Baglietto; Graham G. Giles; Gianluca Severi; Catriona McLean; Melissa C. Southey; Emad A. Rakha; Andrew R. Green; Ian O. Ellis; Mark E. Sherman; Jolanta Lissowska

Paul Pharoah and colleagues evaluate the prognostic significance of immunohistochemical subtype classification in more than 10,000 breast cancer cases with early disease, and examine the influence of a patients survival time on the prediction of future survival.


Nature Genetics | 2007

A common coding variant in CASP8 is associated with breast cancer risk

Angela Cox; Alison M. Dunning; Montserrat Garcia-Closas; Sabapathy P. Balasubramanian; Malcolm Reed; Karen A. Pooley; Serena Scollen; Caroline Baynes; Bruce A.J. Ponder; Stephen J. Chanock; Jolanta Lissowska; Louise A. Brinton; Beata Peplonska; Melissa C. Southey; John L. Hopper; Margaret McCredie; Graham G. Giles; Olivia Fletcher; Nichola Johnson; Isabel dos Santos Silva; Lorna Gibson; Stig E. Bojesen; Børge G. Nordestgaard; Christen K. Axelsson; Diana Torres; Ute Hamann; Christina Justenhoven; Hiltrud Brauch; Jenny Chang-Claude; Silke Kropp

The Breast Cancer Association Consortium (BCAC) has been established to conduct combined case-control analyses with augmented statistical power to try to confirm putative genetic associations with breast cancer. We genotyped nine SNPs for which there was some prior evidence of an association with breast cancer: CASP8 D302H (rs1045485), IGFBP3 −202 C → A (rs2854744), SOD2 V16A (rs1799725), TGFB1 L10P (rs1982073), ATM S49C (rs1800054), ADH1B 3′ UTR A → G (rs1042026), CDKN1A S31R (rs1801270), ICAM5 V301I (rs1056538) and NUMA1 A794G (rs3750913). We included data from 9–15 studies, comprising 11,391–18,290 cases and 14,753–22,670 controls. We found evidence of an association with breast cancer for CASP8 D302H (with odds ratios (OR) of 0.89 (95% confidence interval (c.i.): 0.85–0.94) and 0.74 (95% c.i.: 0.62–0.87) for heterozygotes and rare homozygotes, respectively, compared with common homozygotes; Ptrend = 1.1 × 10−7) and weaker evidence for TGFB1 L10P (OR = 1.07 (95% c.i.: 1.02–1.13) and 1.16 (95% c.i.: 1.08–1.25), respectively; Ptrend = 2.8 × 10−5). These results demonstrate that common breast cancer susceptibility alleles with small effects on risk can be identified, given sufficiently powerful studies.NOTE: In the version of this article initially published, there was an error that affected the calculations of the odds ratios, confidence intervals, between-study heterogeneity, trend test and test for association for SNP ICAM5 V301I in Table 1 (ICAM5 V301I); genotype counts in Supplementary Table 2 (ICAM5; ICR_FBCS and Kuopio studies) and minor allele frequencies, trend test and odds ratios for heterozygotes and rare homozygotes in Supplementary Table 3 (ICAM5; ICR_FBCS and Kuopio studies). The errors in Table 1 have been corrected in the PDF version of the article. The errors in supplementary information have been corrected online.


Nature | 2016

Landscape of somatic mutations in 560 breast cancer whole-genome sequences

Serena Nik-Zainal; Helen Davies; Johan Staaf; Manasa Ramakrishna; Dominik Glodzik; Xueqing Zou; Inigo Martincorena; Ludmil B. Alexandrov; Sancha Martin; David C. Wedge; Peter Van Loo; Young Seok Ju; Michiel M. Smid; Arie B. Brinkman; Sandro Morganella; Miriam Ragle Aure; Ole Christian Lingjærde; Anita Langerød; Markus Ringnér; Sung-Min Ahn; Sandrine Boyault; Jane E. Brock; Annegien Broeks; Adam Butler; Christine Desmedt; Luc Dirix; Serge Dronov; Aquila Fatima; John A. Foekens; Moritz Gerstung

We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.


Journal of Clinical Oncology | 2009

Breast Cancer Risk in Female Survivors of Hodgkin's Lymphoma: Lower Risk After Smaller Radiation Volumes

Marie L. De Bruin; Judith Sparidans; Mars B. van 't Veer; Evert M. Noordijk; Marieke W.J. Louwman; Josée M. Zijlstra; Hendrik van den Berg; Nicola S. Russell; Annegien Broeks; Margreet H. A. Baaijens; Berthe M.P. Aleman; Flora E. van Leeuwen

PURPOSE We assessed the long-term risk of breast cancer (BC) after treatment for Hodgkins lymphoma (HL). We focused on the volume of breast tissue exposed to radiation and the influence of gonadotoxic chemotherapy (CT). PATIENTS AND METHODS We performed a cohort study among 1,122 female 5-year survivors treated for HL before the age of 51 years between 1965 and 1995. We compared the incidence of BC with that in the general population. To assess the risk according to radiation volume and hormone factors, we performed multivariate Cox regression analyses. RESULTS After a median follow-up of 17.8 years, 120 women developed BC (standardized incidence ratio [SIR], 5.6; 95% CI, 4.6 to 6.8), absolute excess risk 57 per 10,000 patients per year. The overall cumulative incidence 30 years after treatment was 19% (95% CI, 16% to 23%); for those treated before age 21 years, it was 26% (95% CI, 19% to 33%). The relative risk remained high after prolonged follow-up (> 30 years after treatment: SIR, 9.5; 95% CI, 4.9 to 16.6). Mantle field irradiation (involving the axillary, mediastinal, and neck nodes) was associated with a 2.7-fold increased risk (95% CI, 1.1 to 6.9) compared with similarly dosed (36 to 44 Gy) mediastinal irradiation alone. Women with >or= 20 years of intact ovarian function after radiotherapy at young ages (< 31 years) experienced significantly higher risks for BC than those with fewer than 10 years of intact ovarian function. CONCLUSION Reduction of radiation volume appears to decrease the risk for BC after HL. In addition, shorter duration of intact ovarian function after irradiation is associated with a significant reduction of the risk for BC.


Nature Genetics | 2010

A genome-wide association study of Hodgkin's lymphoma identifies new susceptibility loci at 2p16.1 ( REL ), 8q24.21 and 10p14 ( GATA3 )

Victor Enciso-Mora; Peter Broderick; Yussanne Ma; Ruth F. Jarrett; Henrik Hjalgrim; Kari Hemminki; Anke van den Berg; Bianca Olver; Amy Lloyd; Sara E. Dobbins; Tracy Lightfoot; Flora E. van Leeuwen; Asta Försti; A Diepstra; Annegien Broeks; Jayaram Vijayakrishnan; Lesley Shield; Annette Lake; Dorothy Montgomery; Eve Roman; Andreas Engert; Elke Pogge von Strandmann; Katrin S. Reiners; Ilja M. Nolte; Karin E. Smedby; Hans-Olov Adami; Nicola S. Russell; Bengt Glimelius; Stephen Hamilton-Dutoit; Marieke De Bruin

To identify susceptibility loci for classical Hodgkins lymphoma (cHL), we conducted a genome-wide association study of 589 individuals with cHL (cases) and 5,199 controls with validation in four independent samples totaling 2,057 cases and 3,416 controls. We identified three new susceptibility loci at 2p16.1 (rs1432295, REL, odds ratio (OR) = 1.22, combined P = 1.91 × 10−8), 8q24.21 (rs2019960, PVT1, OR = 1.33, combined P = 1.26 × 10−13) and 10p14 (rs501764, GATA3, OR = 1.25, combined P = 7.05 × 10−8). Furthermore, we confirmed the role of the major histocompatibility complex in disease etiology by revealing a strong human leukocyte antigen (HLA) association (rs6903608, OR = 1.70, combined P = 2.84 × 10−50). These data provide new insight into the pathogenesis of cHL.


Neurology | 2009

Clinical spectrum of ataxia-telangiectasia in adulthood

Mijke M.M. Verhagen; W. F. Abdo; M.A.A.P. Willemsen; Frans B. L. Hogervorst; Dominique Smeets; J.A.P. Hiel; Ewout Brunt; M. A. van Rijn; D. Majoor Krakauer; Rogier A. Oldenburg; Annegien Broeks; L. J. van’t Veer; Marina A. J. Tijssen; A. M.I. Dubois; H. P.H. Kremer; Corry Weemaes; A.M.R. Taylor; M. van Deuren

Objective: To describe the phenotype of adult patients with variant and classic ataxia-telangiectasia (A-T), to raise the degree of clinical suspicion for the diagnosis variant A-T, and to assess a genotype–phenotype relationship for mutations in the ATM gene. Methods: Retrospective analysis of the clinical characteristics and course of disease in 13 adult patients with variant A-T of 9 families and 6 unrelated adults with classic A-T and mutation analysis of the ATM gene and measurements of ATM protein expression and kinase activity. Results: Patients with variant A-T were only correctly diagnosed in adulthood. They often presented with extrapyramidal symptoms in childhood, whereas cerebellar ataxia appeared later. Four patients with variant A-T developed a malignancy. Patients with classic and variant A-T had elevated serum α-fetoprotein levels and chromosome 7/14 rearrangements. The mildest variant A-T phenotype was associated with missense mutations in the ATM gene that resulted in expression of some residual ATM protein with kinase activity. Two splicing mutations, c.331 + 5G>A and c.496 + 5G>A, caused a more severe variant A-T phenotype. The splicing mutation c.331 + 5G>A resulted in less ATM protein and kinase activity than the missense mutations. Conclusions: Ataxia-telangiectasia (A-T) should be considered in patients with unexplained extrapyramidal symptoms. Early diagnosis is important given the increased risk of malignancies and the higher risk for side effects of subsequent cancer treatment. Measurement of serum α-fetoprotein and chromosomal instability precipitates the correct diagnosis. There is a clear genotype–phenotype relation for A-T, since the severity of the phenotype depends on the amount of residual kinase activity as determined by the genotype.


Journal of Clinical Oncology | 2006

Breast Cancer Survival and Tumor Characteristics in Premenopausal Women Carrying the CHEK2*1100delC Germline Mutation

Marjanka K. Schmidt; Rob A. E. M. Tollenaar; Sanne de Kemp; Annegien Broeks; Cees J. Cornelisse; Vincent T.H.B.M. Smit; Johannes L. Peterse; Flora E. van Leeuwen; Laura J. van 't Veer

PURPOSE Women carrying a CHEK2*1100delC germline mutation have an increased risk of developing breast cancer. This study aims to determine the proportion of CHEK2*1100delC carriers in a premenopausal breast cancer population, unselected for family history of breast cancer, and to investigate tumor characteristics and disease outcome with sufficient follow-up. PATIENTS AND METHODS We identified a retrospective cohort of 1,479 patients, who received surgery for invasive breast cancer between 1970 and 1994. All patients were diagnosed before age 50. Paraffin-embedded tissue blocks were collected for DNA isolation (normal tissue), subsequent CHEK2*1100delC analysis, and tumor revision. Median follow-up was 10.1 years. RESULTS We detected a CHEK2*1100delC germline mutation in 54 patients (3.7%). Tumor characteristics of CHEK2*1100delC carriers did not differ significantly from those of noncarriers. CHEK2*1100delC carriers had a two-fold increased risk (hazard ratio [HR], 2.1; 95% CI, 1.0 to 4.3; P = .049) of developing a second breast cancer and they had worse recurrence-free survival (HR, 1.7; 95% CI, 1.2 to 2.4; P = .006) and worse breast cancer-specific survival (HR, 1.4; 95% CI, 1.0 to 2.1; P = .072) compared with noncarriers. The poorer disease outcome of CHEK2*1100delC carriers could not be explained by the increased risk of second breast cancer. CONCLUSION Our study, which is representative for the premenopausal breast cancer population, reveals approximately 4% CHEK2*1100delC carriers have an increased risk of second breast cancer and a worse long-term recurrence-free survival rate. Their identification at time of diagnosis and prolonged intensive follow-up should be considered to optimize clinical management.


The Journal of Pathology | 2013

Identification of recurrent FGFR3 fusion genes in lung cancer through kinome‐centred RNA sequencing

Ian Majewski; Lorenza Mittempergher; Nadia M Davidson; Astrid Bosma; Stefan M. Willems; Hugo M. Horlings; Iris de Rink; Liliana Greger; Gerrit K.J. Hooijer; Dennis Peters; Petra M. Nederlof; Ingrid Hofland; Jeroen de Jong; Jelle Wesseling; Roelof Jc Kluin; Wim Brugman; Ron M. Kerkhoven; Frank Nieboer; Paul Roepman; Annegien Broeks; Thomas Muley; Jacek Jassem; Jacek Niklinski; Nico van Zandwijk; Alvis Brazma; Alicia Oshlack; Michel M. van den Heuvel; René Bernards

Oncogenic fusion genes that involve kinases have proven to be effective targets for therapy in a wide range of cancers. Unfortunately, the diagnostic approaches required to identify these events are struggling to keep pace with the diverse array of genetic alterations that occur in cancer. Diagnostic screening in solid tumours is particularly challenging, as many fusion genes occur with a low frequency. To overcome these limitations, we developed a capture enrichment strategy to enable high‐throughput transcript sequencing of the human kinome. This approach provides a global overview of kinase fusion events, irrespective of the identity of the fusion partner. To demonstrate the utility of this system, we profiled 100 non‐small cell lung cancers and identified numerous genetic alterations impacting fibroblast growth factor receptor 3 (FGFR3) in lung squamous cell carcinoma and a novel ALK fusion partner in lung adenocarcinoma.


Journal of Clinical Oncology | 2012

CHEK2*1100delC Heterozygosity in Women With Breast Cancer Associated With Early Death, Breast Cancer–Specific Death, and Increased Risk of a Second Breast Cancer

Maren Weischer; Børge G. Nordestgaard; Paul Pharoah; Manjeet K. Bolla; Heli Nevanlinna; Laura J. van't Veer; Montserrat Garcia-Closas; John L. Hopper; Per Hall; Irene L. Andrulis; Peter Devilee; Peter A. Fasching; Hoda Anton-Culver; Diether Lambrechts; Maartje J. Hooning; Angela Cox; Graham G. Giles; Barbara Burwinkel; Annika Lindblom; Fergus J. Couch; Arto Mannermaa; Grethe Grenaker Alnæs; Esther M. John; Thilo Dörk; Henrik Flyger; Alison M. Dunning; Qin Wang; Taru A. Muranen; Richard van Hien; Jonine D. Figueroa

PURPOSE We tested the hypotheses that CHEK2*1100delC heterozygosity is associated with increased risk of early death, breast cancer-specific death, and risk of a second breast cancer in women with a first breast cancer. PATIENTS AND METHODS From 22 studies participating in the Breast Cancer Association Consortium, 25,571 white women with invasive breast cancer were genotyped for CHEK2*1100delC and observed for up to 20 years (median, 6.6 years). We examined risk of early death and breast cancer-specific death by estrogen receptor status and risk of a second breast cancer after a first breast cancer in prospective studies. RESULTS CHEK2*1100delC heterozygosity was found in 459 patients (1.8%). In women with estrogen receptor-positive breast cancer, multifactorially adjusted hazard ratios for heterozygotes versus noncarriers were 1.43 (95% CI, 1.12 to 1.82; log-rank P = .004) for early death and 1.63 (95% CI, 1.24 to 2.15; log-rank P < .001) for breast cancer-specific death. In all women, hazard ratio for a second breast cancer was 2.77 (95% CI, 2.00 to 3.83; log-rank P < .001) increasing to 3.52 (95% CI, 2.35 to 5.27; log-rank P < .001) in women with estrogen receptor-positive first breast cancer only. CONCLUSION Among women with estrogen receptor-positive breast cancer, CHEK2*1100delC heterozygosity was associated with a 1.4-fold risk of early death, a 1.6-fold risk of breast cancer-specific death, and a 3.5-fold risk of a second breast cancer. This is one of the few examples of a genetic factor that influences long-term prognosis being documented in an extensive series of women with breast cancer.

Collaboration


Dive into the Annegien Broeks's collaboration.

Top Co-Authors

Avatar

Marjanka K. Schmidt

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Nicola S. Russell

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Flora E. van Leeuwen

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Joyce Sanders

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linde M. Braaf

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Carl Blomqvist

Uppsala University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge