Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annegret Kohler is active.

Publication


Featured researches published by Annegret Kohler.


Science | 2012

The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes

Dimitrios Floudas; Manfred Binder; Robert Riley; Kerrie Barry; Robert A. Blanchette; Bernard Henrissat; Ángel T. Martínez; Robert Otillar; Joseph W. Spatafora; Jagjit S. Yadav; Andrea Aerts; Isabelle Benoit; Alex Boyd; Alexis Carlson; Alex Copeland; Pedro M. Coutinho; Ronald P. de Vries; Patricia Ferreira; Keisha Findley; Brian Foster; Jill Gaskell; Dylan Glotzer; Paweł Górecki; Joseph Heitman; Cedar Hesse; Chiaki Hori; Kiyohiko Igarashi; Joel A. Jurgens; Nathan Kallen; Phil Kersten

Dating Wood Rot Specific lineages within the basidiomycete fungi, white rot species, have evolved the ability to break up a major structural component of woody plants, lignin, relative to their non–lignin-decaying brown rot relatives. Through the deep phylogenetic sampling of fungal genomes, Floudas et al. (p. 1715; see the Perspective by Hittinger) mapped the detailed evolution of wood-degrading enzymes. A key peroxidase and other enzymes involved in lignin decay were present in the common ancestor of the Agaricomycetes. These genes then expanded through gene duplications in parallel, giving rise to white rot lineages. The enzyme family that enables fungi to digest lignin expanded around the end of the coal-forming Carboniferous period. Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non–lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.


Nature | 2008

The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis

Francis L. Martin; Andrea Aerts; Dag Ahrén; Annick Brun; E. G. J. Danchin; F. Duchaussoy; J. Gibon; Annegret Kohler; Erika Lindquist; V. Pereda; Asaf Salamov; Harris Shapiro; Jan Wuyts; D. Blaudez; M. Buée; P. Brokstein; Björn Canbäck; D. Cohen; P. E. Courty; P. M. Coutinho; Christine Delaruelle; John C. Detter; A. Deveau; Stephen P. DiFazio; Sébastien Duplessis; L. Fraissinet-Tachet; E. Lucic; P. Frey-Klett; C. Fourrey; Ivo Feussner

Mycorrhizal symbioses—the union of roots and soil fungi—are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants. Boreal, temperate and montane forests all depend on ectomycorrhizae. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains ∼20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.


Nature | 2010

Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis

Francis L. Martin; Annegret Kohler; Claude Murat; Raffaella Balestrini; Pedro M. Coutinho; Olivier Jaillon; Barbara Montanini; Emmanuelle Morin; Benjamin Noel; Riccardo Percudani; Bettina Porcel; Andrea Rubini; Antonella Amicucci; Joelle Amselem; Véronique Anthouard; Sergio Arcioni; François Artiguenave; Jean-Marc Aury; Paola Ballario; Angelo Bolchi; Andrea Brenna; Annick Brun; Marc Buee; Brandi Cantarel; Gérard Chevalier; Arnaud Couloux; Corinne Da Silva; Sébastien Duplessis; Stefano Ghignone; Benoı̂t Hilselberger

The Périgord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today’s truffle market. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a ‘symbiosis toolbox’. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at ∼125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for ∼58% of the genome. In contrast, this genome only contains ∼7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis—‘the symbiosis toolbox’—evolved along different ways in ascomycetes and basidiomycetes.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Obligate biotrophy features unraveled by the genomic analysis of rust fungi

Sébastien Duplessis; Christina A. Cuomo; Yao-Cheng Lin; Andrea Aerts; Emilie Tisserant; Claire Veneault-Fourrey; David L. Joly; Stéphane Hacquard; Joelle Amselem; Brandi L. Cantarel; Readman Chiu; Pedro M. Coutinho; Nicolas Feau; Matthew A. Field; Pascal Frey; Eric Gelhaye; Jonathan M. Goldberg; Manfred Grabherr; Chinnappa D. Kodira; Annegret Kohler; Ursula Kües; Erika Lindquist; Susan Lucas; Rohit Mago; Evan Mauceli; Emmanuelle Morin; Claude Murat; Jasmyn Pangilinan; Robert F. Park; Matthew Pearson

Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.


Science | 2011

The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi

Daniel C. Eastwood; Dimitrios Floudas; Manfred Binder; Andrzej Majcherczyk; Patrick Schneider; Andrea Aerts; Fred O. Asiegbu; Scott E. Baker; Kerrie Barry; Mika Bendiksby; Melanie Blumentritt; Pedro M. Coutinho; Dan Cullen; Ronald P. de Vries; Allen C. Gathman; Barry Goodell; Bernard Henrissat; Katarina Ihrmark; Håvard Kauserud; Annegret Kohler; Kurt LaButti; Alla Lapidus; José L. Lavín; Yong-Hwan Lee; Erika Lindquist; Walt W. Lilly; Susan Lucas; Emmanuelle Morin; Claude Murat; José A. Oguiza

Comparative genomic analysis of “dry rot” fungus shows both convergent evolution and divergence among fungal decomposers. Brown rot decay removes cellulose and hemicellulose from wood—residual lignin contributing up to 30% of forest soil carbon—and is derived from an ancestral white rot saprotrophy in which both lignin and cellulose are decomposed. Comparative and functional genomics of the “dry rot” fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution of both ectomycorrhizal biotrophy and brown rot saprotrophy were accompanied by reductions and losses in specific protein families, suggesting adaptation to an intercellular interaction with plant tissue. Transcriptome and proteome analysis also identified differences in wood decomposition in S. lacrymans relative to the brown rot Postia placenta. Furthermore, fungal nutritional mode diversification suggests that the boreal forest biome originated via genetic coevolution of above- and below-ground biota.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis

Emilie Tisserant; Mathilde Malbreil; Alan Kuo; Annegret Kohler; Aikaterini Symeonidi; Raffaella Balestrini; Philippe Charron; Nina Duensing; Nicolas Frei dit Frey; Vivienne Gianinazzi-Pearson; Luz B. Gilbert; Yoshihiro Handa; Joshua R. Herr; Mohamed Hijri; Raman Koul; Masayoshi Kawaguchi; Franziska Krajinski; Peter J. Lammers; Frédéric Masclaux; Claude Murat; Emmanuelle Morin; Steve Ndikumana; Marco Pagni; Denis Petitpierre; Natalia Requena; Pawel Rosikiewicz; Rohan Riley; Katsuharu Saito; Hélène San Clemente; Harris Shapiro

Significance The arbuscular mycorrhizal symbiosis between fungi of the Glomeromycota phylum and plants involves more than two-thirds of all known plant species, including important crop species. This mutualistic symbiosis, involving one of the oldest fungal lineages, is arguably the most ecologically and agriculturally important symbiosis in terrestrial ecosystems. The Glomeromycota are unique in that their spores and coenocytic hyphae contain hundreds of nuclei in a common cytoplasm, which raises important questions about the natural selection, population genetics, and gene expression of these highly unusual organisms. Study of the genome of Rhizophagus irregularis provides insight into genes involved in obligate biotrophy and mycorrhizal symbioses and the evolution of an ancient asexual organism, and thus is of fundamental importance to the field of genome evolution. The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Obligate Biotrophy Features Unraveled by the Genomic Analysis of the Rust Fungi, Melampsora larici-populina and Puccinia graminis f. sp. tritici

Sébastien Duplessis; Christina A. Cuomo; Yao-Cheng Lin; Andrea Aerts; Emilie Tisserant; Claire Veneault-Fourrey; David L. Joly; Stéphane Hacquard; Joelle Amselem; Brandi L. Cantarel; Readman Chiu; Pedro Couthinho; Nicolas Feau; Matthew A. Field; Pascal Frey; Eric Gelhaye; Jonathan M. Goldberg; Manfred Grabherr; Chinnappa D. Kodira; Annegret Kohler; Ursula Kües; Erika Lindquist; Susan Lucas; Rohit Mago; Evan Mauceli; Emmanuelle Morin; Claude Murat; Jasmyn Pangilinan; Robert F. Park; Matthew Pearson

Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.


Plant Physiology | 2002

Benzothiadiazole-Induced Priming for Potentiated Responses to Pathogen Infection, Wounding, and Infiltration of Water into Leaves Requires the NPR1/NIM1 Gene in Arabidopsis

Annegret Kohler; Sandra Schwindling; Uwe Conrath

Systemic acquired resistance (SAR) is a plant defense state that is induced, for example, after previous pathogen infection or by chemicals that mimic natural signaling compounds. SAR is associated with the ability to induce cellular defense responses more rapidly and to a greater degree than in noninduced plants, a process called “priming.” Arabidopsis plants were treated with the synthetic SAR inducer benzothiadiazole (BTH) before stimulating two prominent cellular defense responses, namely Phe AMMONIA-LYASE(PAL) gene activation and callose deposition. Although BTH itself was essentially inactive at the immediate induction of these two responses, the pretreatment with BTH greatly augmented the subsequent PAL gene expression induced byPseudomonas syringae pv. tomatoinfection, wounding, or infiltrating the leaves with water. The BTH pretreatment also enhanced the production of callose, which was induced by wounding or infiltrating the leaves with water. It is interesting that the potentiation by BTH pretreatment of PAL gene activation and callose deposition was not seen in the Arabidopsisnonexpresser of PR genes 1/noninducible immunity 1mutant, which is compromised in SAR. In a converse manner, augmentedPAL gene activation and enhanced callose biosynthesis were found, without BTH pretreatment, in the Arabidopsisconstitutive expresser of pathogenesis-related genes (cpr)1 and constitutive expresser of pathogenesis-related genes 5 mutants, in which SAR is constitutive. Moreover, priming for potentiated defense gene activation was also found in pathogen-induced SAR. In sum, the results suggest that priming is an important cellular mechanism in acquired disease resistance of plants that requires thenonexpresser of PR genes 1/noninducible immunity 1gene.


Current Biology | 2011

A Secreted Effector Protein of Laccaria bicolor Is Required for Symbiosis Development

Jonathan M. Plett; Minna Kemppainen; Shiv D. Kale; Annegret Kohler; Valérie Legué; Annick Brun; Brett M. Tyler; Alejandro G. Pardo; Francis L. Martin

Soil-borne mutualistic fungi, such as the ectomycorrhizal fungi, have helped shape forest communities worldwide over the last 180 million years through a mutualistic relationship with tree roots in which the fungal partner provides a large array of nutrients to the plant host in return for photosynthetically derived sugars. This exchange is essential for continued growth and productivity of forest trees, especially in nutrient-poor soils. To date, the signals from the two partners that mediate this symbiosis have remained uncharacterized. Here we demonstrate that MYCORRHIZAL iNDUCED SMALL SECRETED PROTEIN 7 (MiSSP7), the most highly symbiosis-upregulated gene from the ectomycorrhizal fungus Laccaria bicolor, encodes an effector protein indispensible for the establishment of mutualism. MiSSP7 is secreted by the fungus upon receipt of diffusible signals from plant roots, imported into the plant cell via phosphatidylinositol 3-phosphate-mediated endocytosis, and targeted to the plant nucleus where it alters the transcriptome of the plant cell. L. bicolor transformants with reduced expression of MiSSP7 do not enter into symbiosis with poplar roots. MiSSP7 resembles effectors of pathogenic fungi, nematodes, and bacteria that are similarly targeted to the plant nucleus to promote colonization of the plant tissues and thus can be considered a mutualism effector.


New Phytologist | 2012

The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont

Emilie Tisserant; Annegret Kohler; P. Dozolme-Seddas; Raffaella Balestrini; Karim Benabdellah; Alexandre Colard; Daniel Croll; C. da Silva; S. K. Gomez; Raman Koul; Nuria Ferrol; Valentina Fiorilli; Damien Formey; Philipp Franken; Nicole Helber; Mohamed Hijri; Luisa Lanfranco; Erika Lindquist; Y. Liu; Mathilde Malbreil; Emmanuelle Morin; Julie Poulain; Harris Shapiro; D. van Tuinen; A. Waschke; Concepción Azcón-Aguilar; Guillaume Bécard; Paola Bonfante; Maria J. Harrison; Helge Küster

• The arbuscular mycorrhizal symbiosis is arguably the most ecologically important eukaryotic symbiosis, yet it is poorly understood at the molecular level. To provide novel insights into the molecular basis of symbiosis-associated traits, we report the first genome-wide analysis of the transcriptome from Glomus intraradices DAOM 197198. • We generated a set of 25,906 nonredundant virtual transcripts (NRVTs) transcribed in germinated spores, extraradical mycelium and symbiotic roots using Sanger and 454 sequencing. NRVTs were used to construct an oligoarray for investigating gene expression. • We identified transcripts coding for the meiotic recombination machinery, as well as meiosis-specific proteins, suggesting that the lack of a known sexual cycle in G. intraradices is not a result of major deletions of genes essential for sexual reproduction and meiosis. Induced expression of genes encoding membrane transporters and small secreted proteins in intraradical mycelium, together with the lack of expression of hydrolytic enzymes acting on plant cell wall polysaccharides, are all features of G. intraradices that are shared with ectomycorrhizal symbionts and obligate biotrophic pathogens. • Our results illuminate the genetic basis of symbiosis-related traits of the most ancient lineage of plant biotrophs, advancing future research on these agriculturally and ecologically important symbionts.

Collaboration


Dive into the Annegret Kohler's collaboration.

Top Co-Authors

Avatar

Francis L. Martin

University of Central Lancashire

View shared research outputs
Top Co-Authors

Avatar

Emmanuelle Morin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emilie Tisserant

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sébastien Duplessis

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alan Kuo

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Erika Lindquist

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge