Anneke A.M. Janson
Leiden University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anneke A.M. Janson.
The New England Journal of Medicine | 2011
Nathalie Goemans; Mar Tulinius; Johanna T. van den Akker; Brigitte E. Burm; Peter F. Ekhart; Niki Heuvelmans; Anneke A.M. Janson; Gerard J. Platenburg; Jessica A. Sipkens; Annemieke Aartsma-Rus; Gert-Jan B. van Ommen; Gunnar Buyse; Niklas Darin; Jan J. Verschuuren; G. Campion; Sjef J. de Kimpe; Judith C.T. van Deutekom
BACKGROUND Local intramuscular administration of the antisense oligonucleotide PRO051 in patients with Duchennes muscular dystrophy with relevant mutations was previously reported to induce the skipping of exon 51 during pre-messenger RNA splicing of the dystrophin gene and to facilitate new dystrophin expression in muscle-fiber membranes. The present phase 1-2a study aimed to assess the safety, pharmacokinetics, and molecular and clinical effects of systemically administered PRO051. METHODS We administered weekly abdominal subcutaneous injections of PRO051 for 5 weeks in 12 patients, with each of four possible doses (0.5, 2.0, 4.0, and 6.0 mg per kilogram of body weight) given to 3 patients. Changes in RNA splicing and protein levels in the tibialis anterior muscle were assessed at two time points. All patients subsequently entered a 12-week open-label extension phase, during which they all received PRO051 at a dose of 6.0 mg per kilogram per week. Safety, pharmacokinetics, serum creatine kinase levels, and muscle strength and function were assessed. RESULTS The most common adverse events were irritation at the administration site and, during the extension phase, mild and variable proteinuria and increased urinary α(1)-microglobulin levels; there were no serious adverse events. The mean terminal half-life of PRO051 in the circulation was 29 days. PRO051 induced detectable, specific exon-51 skipping at doses of 2.0 mg or more per kilogram. New dystrophin expression was observed between approximately 60% and 100% of muscle fibers in 10 of the 12 patients, as measured on post-treatment biopsy, which increased in a dose-dependent manner to up to 15.6% of the expression in healthy muscle. After the 12-week extension phase, there was a mean (±SD) improvement of 35.2±28.7 m (from the baseline of 384±121 m) on the 6-minute walk test. CONCLUSIONS Systemically administered PRO051 showed dose-dependent molecular efficacy in patients with Duchennes muscular dystrophy, with a modest improvement in the 6-minute walk test after 12 weeks of extended treatment. (Funded by Prosensa Therapeutics; Netherlands National Trial Register number, NTR1241.).
American Journal of Human Genetics | 2004
Annemieke Aartsma-Rus; Anneke A.M. Janson; Wendy E. Kaman; Mattie Bremmer-Bout; Gert-Jan B. van Ommen; Johan T. den Dunnen; Judith C.T. van Deutekom
Dystrophin deficiency, which leads to severe and progressive muscle degeneration in patients with Duchenne muscular dystrophy (DMD), is caused by frameshifting mutations in the dystrophin gene. A relatively new therapeutic strategy is based on antisense oligonucleotides (AONs) that induce the specific skipping of a single exon, such that the reading frame is restored. This allows the synthesis of a largely functional dystrophin, associated with a milder Becker muscular dystrophy phenotype. We have previously successfully targeted 20 different DMD exons that would, theoretically, be beneficial for >75% of all patients. To further enlarge this proportion, we here studied the feasibility of double and multiexon skipping. Using a combination of AONs, double skipping of exon 43 and 44 was induced, and dystrophin synthesis was restored in myotubes from one patient affected by a nonsense mutation in exon 43. For another patient, with an exon 46-50 deletion, the therapeutic double skipping of exon 45 and 51 was achieved. Remarkably, in control myotubes, the latter combination of AONs caused the skipping of the entire stretch of exons from 45 through 51. This in-frame multiexon skipping would be therapeutic for a series of patients carrying different DMD-causing mutations. In fact, we here demonstrate its feasibility in myotubes from a patient with an exon 48-50 deletion. The application of multiexon skipping may provide a more uniform methodology for a larger group of patients with DMD.
Neuromuscular Disorders | 2002
Annemieke Aartsma-Rus; Mattie Bremmer-Bout; Anneke A.M. Janson; Johan T. den Dunnen; Gert-Jan B. van Ommen; Judith C.T. van Deutekom
Duchenne muscular dystrophy is primarily caused by frame-disrupting mutations in the Duchenne muscular dystrophy gene which abort dystrophin synthesis. We have explored a gene correction therapy aimed at restoration of the reading frame in Duchenne muscular dystrophy patients. Through the binding of antisense oligoribonucleotides to exon-internal sequences in the pre-mRNA, the splicing can be manipulated in such a manner that the targeted exon is skipped and a slightly shorter, but in-frame, transcript is generated. We recently showed that antisense oligoribonucleotide-mediated skipping of exon 46 efficiently induced dystrophin synthesis in cultured muscle cells from Duchenne muscular dystrophy patients carrying an exon 45 deletion. In this study we have identified antisense oligoribonucleotides with which the skipping of 11 other Duchenne muscular dystrophy exons could be induced in cultured human muscle cells. The targeted skipping of only one particular exon may restore the reading frame in a series of patients with different mutations. Accordingly, these antisense oligoribonucleotides would allow correction of over 50% of deletions and 22% of duplications reported in the Leiden DMD-mutation Database.
Journal of Virology | 2002
Menzo Jans Emco Havenga; Angelique A. C. Lemckert; Olga Ophorst; M. van Meijer; Wilfred T. V. Germeraad; Jos M. Grimbergen; M. van den Doel; Ronald Vogels; J. van Deutekom; Anneke A.M. Janson; J. D. de Bruijn; F. Uytdehaag; Paul H.A. Quax; Ton Logtenberg; M. Mehtali; Abraham Bout
ABSTRACT Since targeting of recombinant adenovirus vectors to defined cell types in vivo is a major challenge in gene therapy and vaccinology, we explored the natural diversity in human adenovirus tissue tropism. Hereto, we constructed a library of Ad5 vectors carrying fibers from other human serotypes. From this library, we identified vectors that efficiently infect human cells that are important for diverse gene therapy approaches and for induction of immunity. For several medical applications (prenatal diagnosis, artificial bone, vaccination, and cardiovascular disease), we demonstrate the applicability of these novel vectors. In addition, screening cell types derived from different species revealed that cellular receptors for human subgroup B adenoviruses are not conserved between rodents and primates. These results provide a rationale for utilizing elements of human adenovirus serotypes to generate chimeric vectors that improve our knowledge concerning adenovirus biology and widen the therapeutic window for vaccination and many different gene transfer applications.
Gene Therapy | 2004
Annemieke Aartsma-Rus; Wendy E. Kaman; Mattie Bremmer-Bout; Anneke A.M. Janson; J.T. den Dunnen; G-J B van Ommen; J.C.T. van Deutekom
As small molecule drugs for Duchenne muscular dystrophy (DMD), antisense oligonucleotides (AONs) have been shown to restore the disrupted reading frame of DMD transcripts by inducing specific exon skipping. This allows the synthesis of largely functional Becker muscular dystrophy (BMD)-like dystrophins and potential conversion of severe DMD into milder BMD phenotypes. Thus far we have used 2′-O-methyl phosphorothioate (2OMePS) AONs. Here, we assessed the skipping efficiencies of different AON analogs containing morpholino-phosphorodiamidate, locked nucleic acid (LNA) or peptide nucleic acid (PNA) backbones. In contrast to PNAs and morpholinos, LNAs have not yet been tested as splice modulators. Compared to the most effective 2OMePS AON directed at exon 46, the LNA induced higher skipping levels in myotubes from a human control (85 versus 20%) and an exon 45 deletion DMD patient (98 versus 75%). The morpholino-induced skipping levels were only 5–6%, whereas the PNA appeared to be ineffective. Further comparative analysis of LNA and 2OMePS AONs containing up to three mismatches revealed that LNAs, while inducing higher skipping efficiencies, show much less sequence specificity. This limitation increases the risk of adverse effects elsewhere in the human genome. Awaiting further improvements in oligochemistry, we thus consider 2OMePS AONs currently the most favorable compounds, at least for targeted DMD exon 46 skipping.
Molecular Therapy | 2009
Annemieke Aartsma-Rus; Laura van Vliet; Marscha Hirschi; Anneke A.M. Janson; Hans Heemskerk; Christa L. de Winter; Sjef J. de Kimpe; Judith C.T. van Deutekom; Peter A. C. 't Hoen; Gert-Jan B. van Ommen
Antisense oligonucleotides (AONs) can interfere with mRNA processing through RNase H-mediated degradation, translational arrest, or modulation of splicing. The antisense approach relies on AONs to efficiently bind to target sequences and depends on AON length, sequence content, secondary structure, thermodynamic properties, and target accessibility. We here performed a retrospective analysis of a series of 156 AONs (104 effective, 52 ineffective) previously designed and evaluated for splice modulation of the dystrophin transcript. This showed that the guanine-cytosine content and the binding energies of AON-target and AON-AON complexes were significantly higher for effective AONs. Effective AONs were also located significantly closer to the acceptor splice site (SS). All analyzed AONs are exon-internal and may act through steric hindrance of Ser-Arg-rich (SR) proteins to exonic splicing enhancer (ESE) sites. Indeed, effective AONs were significantly enriched for ESEs predicted by ESE software programs, except for predicted binding sites of SR protein Tra2beta, which were significantly enriched in ineffective AONs. These findings compile guidelines for development of AONs and provide more insight into the mechanism of antisense-mediated exon skipping. On the basis of only four parameters, we could correctly classify 79% of all AONs as effective or ineffective, suggesting these parameters can be used to more optimally design splice-modulating AONs.Antisense oligonucleotides (AONs) can interfere with mRNA processing through RNase H-mediated degradation, translational arrest, or modulation of splicing. The antisense approach relies on AONs to efficiently bind to target sequences and depends on AON length, sequence content, secondary structure, thermodynamic properties, and target accessibility. We here performed a retrospective analysis of a series of 156 AONs (104 effective, 52 ineffective) previously designed and evaluated for splice modulation of the dystrophin transcript. This showed that the guanine-cytosine content and the binding energies of AON-target and AON-AON complexes were significantly higher for effective AONs. Effective AONs were also located significantly closer to the acceptor splice site (SS). All analyzed AONs are exon-internal and may act through steric hindrance of Ser-Arg-rich (SR) proteins to exonic splicing enhancer (ESE) sites. Indeed, effective AONs were significantly enriched for ESEs predicted by ESE software programs, except for predicted binding sites of SR protein Tra2β, which were significantly enriched in ineffective AONs. These findings compile guidelines for development of AONs and provide more insight into the mechanism of antisense-mediated exon skipping. On the basis of only four parameters, we could correctly classify 79% of all AONs as effective or ineffective, suggesting these parameters can be used to more optimally design splice-modulating AONs.
Journal of Neurology, Neurosurgery, and Psychiatry | 2014
J.C. van den Bergen; B.H.A. Wokke; Anneke A.M. Janson; S. G. van Duinen; M A Hulsker; H.B. Ginjaar; J.C.T. van Deutekom; Annemieke Aartsma-Rus; Hermien E. Kan; J. Verschuuren
Objective Becker muscular dystrophy (BMD) is characterised by broad clinical variability. Ongoing studies exploring dystrophin restoration in Duchenne muscular dystrophy ask for better understanding of the relation between dystrophin levels and disease severity. We studied this relation in BMD patients with varying mutations, including a large subset with an exon 45–47 deletion. Methods Dystrophin was quantified by western blot analyses in a fresh muscle biopsy of the anterior tibial muscle. Disease severity was assessed using quantitative muscle strength measurements and functional disability scoring. MRI of the leg was performed in a subgroup to detect fatty infiltration. Results 33 BMD patients participated. No linear relation was found between dystrophin levels (range 3%–78%) and muscle strength or age at different disease milestones, in both the whole group and the subgroup of exon 45–47 deleted patients. However, patients with less than 10% dystrophin all showed a severe disease course. No relation was found between disease severity and age when analysing the whole group. By contrast, in the exon 45–47 deleted subgroup, muscle strength and levels of fatty infiltration were significantly correlated with patients’ age. Conclusions Our study shows that dystrophin levels appear not to be a major determinant of disease severity in BMD, as long as it is above approximately 10%. A significant relation between age and disease course was only found in the exon 45–47 deletion subgroup. This suggests that at higher dystrophin levels, the disease course depends more on the mutation site than on the amount of the dystrophin protein produced.
Annals of the New York Academy of Sciences | 2006
Annemieke Aartsma-Rus; Anneke A.M. Janson; J.A. Heemskerk; C.L. de Winter; G.J.B. van Ommen; J.C.T. van Deutekom
Abstract: Antisense oligonucleotides (AONs) can be used to correct the disrupted reading frame of Duchenne muscular dystophy patients (DMD). We have a collection of 121 AONs, of which 79 are effective in inducing the specific skipping of 38 out of the 79 different DMD exons. All AONs are located within exons and were hypothesized to act by steric hindrance of serine‐arginine rich (SR) protein binding to exonic splicing enhancer (ESE) sites. Indeed, retrospective in silico analysis of effective versus ineffective AONs revealed that the efficacy of AONs is correlated to the presence of putative ESE sites (as predicted by the ESEfinder and RESCUE‐ESE software). ESE predicting software programs are thus valuable tools for the optimization of exon‐internal antisense target sequences.
PLOS ONE | 2018
Chantal Beekman; Anneke A.M. Janson; Aabed Baghat; Judith C.T. van Deutekom; Nicole A. Datson
Duchenne muscular dystrophy (DMD) is a neuromuscular disease characterized by progressive weakness of the skeletal and cardiac muscles. This X-linked disorder is caused by open reading frame disrupting mutations in the DMD gene, resulting in strong reduction or complete absence of dystrophin protein. In order to use dystrophin as a supportive or even surrogate biomarker in clinical studies on investigational drugs aiming at correcting the primary cause of the disease, the ability to reliably quantify dystrophin expression in muscle biopsies of DMD patients pre- and post-treatment is essential. Here we demonstrate the application of the ProteinSimple capillary immunoassay (Wes) method, a gel- and blot-free method requiring less sample, antibody and time to run than conventional Western blot assay. We optimized dystrophin quantification by Wes using 2 different antibodies and found it to be highly sensitive, reproducible and quantitative over a large dynamic range. Using a healthy control muscle sample as a reference and α-actinin as a protein loading/muscle content control, a panel of skeletal muscle samples consisting of 31 healthy controls, 25 Becker Muscle dystrophy (BMD) and 17 DMD samples was subjected to Wes analysis. In healthy controls dystrophin levels varied 3 to 5-fold between the highest and lowest muscle samples, with the reference sample representing the average of all 31 samples. In BMD muscle samples dystrophin levels ranged from 10% to 90%, with an average of 33% of the healthy muscle average, while for the DMD samples the average dystrophin level was 1.3%, ranging from 0.7% to 7% of the healthy muscle average. In conclusion, Wes is a suitable, efficient and reliable method for quantification of dystrophin expression as a biomarker in DMD clinical drug development.
Neuromuscular Disorders | 2012
J.C. van den Bergen; B.H.A. Wokke; S. G. van Duinen; H.B. Ginjaar; Anneke A.M. Janson; J.C.T. van Deutekom; Annemieke Aartsma-Rus; Hermien E. Kan; J. Verschuuren
Becker Muscular Dystrophy (BMD) shows a highly variable disease course. The cause of this diversity is mostly unknown. Dystrophin levels in muscle tissue are thought to be an important factor. We investigated the relationship between the amount of dystrophin in muscle biopsies and clinical severity in BMD patients with an exon 45–47 deletion. Thirteen patients with an exon 45–47 deletion were included, ranging in age from 20 to 63 years. Muscle strength was bilaterally measured using the Quantitative Muscle Testing (QMT) system in nine muscle groups: shoulder abduction, elbow flexion/extension, handgrip, hip flexion/extension, knee flexion/extension and ankle flexion. To assess muscle quality 3T MRI of the lower leg was performed. A muscle biopsy was taken from the anterior tibial muscle. Dystrophin quantification was performed by Western Blot analysis, using two antibodies: DYS1 (rod domain) and AB15277 (C-terminus). Statistical analysis was performed using Pearson’s correlation test. Dystrophin levels ranged from 15% to 71% compared to healthy control muscle. The correlation between the two antibodies was excellent (R 0.88; p < 0.001). No relationship was present between dystrophin levels and QMT-sum score or fatty infiltration on MRI. In contrast, the QMT-sum score and fatty infiltration on MRI correlated significantly with patients’ age. The current study shows that the dystrophin level in itself does not explain the variation in disease severity in BMD patients with an exon 45–47 deletion. The strong relationship between strength or MRI abnormalities and age suggests that in this subgroup of Becker patients the disease course is determined by the mutation rather than the quantity of the internally deleted dystrophin protein.