Anneke Engering
VU University Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anneke Engering.
Nature | 1997
Marina Cella; Anneke Engering; Valérie Pinet; Jean Pieters; Antonio Lanzavecchia
Dendritic cells have the remarkable property of presenting any incoming antigen. To do so they must not only capture antigens with high efficiency and broad specificity, but must also maximize their capacity to load class II molecules of the major histocompatibility complex (MHC) with antigenic peptides in order to present a large array of epitopes from different proteins, each at a sufficient copy number. Here we show that formation of peptide–MHC class II complexes is boosted by inflammatory stimuli that induce maturation of dendritic cells. In immature dendritic cells, class II molecules are rapidly internalized and recycled, turning over with a half-life of about 10 hours. Inflammatory stimuli induce a rapid and transient boost of class II synthesis, while the half-life of class II molecules increases to over 100 hours. These coordinated changes result in the rapid accumulation of a large number of long-lived peptide-loaded MHC class II molecules capable of stimulating T cells even after several days. The capacity of dendritic cells to load many antigenic peptides over a short period of initial exposure to inflammatory stimuli could favour presentation of infectious antigens.
Journal of Immunology | 2002
Anneke Engering; Teunis B. H. Geijtenbeek; Sandra J. van Vliet; Mietske Wijers; Nicolas Demaurex; Antonio Lanzavecchia; Jack A. M. Fransen; Carl G. Figdor; Vincent Piguet; Yvette van Kooyk
Dendritic cells (DCs) capture Ags or viruses in peripheral tissue to transport them to lymphoid organs to induce cellular T cell responses. Recently, a DC-specific C-type lectin was identified, DC-specific ICAM-grabbing non-integrin (DC-SIGN), that functions as cell adhesion receptor mediating both DC migration and T cell activation. DC-SIGN also functions as an HIV-1R that captures HIVgp120 and facilitates DC-induced HIV transmission of T cells. Internalization motifs in the cytoplasmic tail of DC-SIGN hint to a function of DC-SIGN as endocytic receptor. In this study we demonstrate that on DCs DC-SIGN is rapidly internalized upon binding of soluble ligand. Mutating a putative internalization motif in the cytoplasmic tail reduces ligand-induced internalization. Detailed analysis using ratio fluorescence imaging and electron microscopy showed that DC-SIGN-ligand complexes are targeted to late endosomes/lysosomes. Moreover, ligands internalized by DC-SIGN are efficiently processed and presented to CD4+ T cells. The distinct pattern of expression of C-type lectins on DCs in situ and their nonoverlapping Ag recognition profile hint to selective functions of these receptors to allow a DC to recognize a wide variety of Ags and to process these to induce T cell activation. These data point to a novel function of the adhesion receptor DC-SIGN as an efficient DC-specific Ag receptor that can be used as a target to induce viral and antitumor immunity.
Journal of Experimental Medicine | 2004
Mathijs P. Bergman; Anneke Engering; Hermelijn H. Smits; Sandra J. van Vliet; Ad A. van Bodegraven; Hans-Peter Wirth; Martien L. Kapsenberg; Christina M. J. E. Vandenbroucke-Grauls; Yvette van Kooyk; Ben J. Appelmelk
The human gastric pathogen Helicobacter pylori spontaneously switches lipopolysaccharide (LPS) Lewis (Le) antigens on and off (phase-variable expression), but the biological significance of this is unclear. Here, we report that Le+ H. pylori variants are able to bind to the C-type lectin DC-SIGN and present on gastric dendritic cells (DCs), and demonstrate that this interaction blocks T helper cell (Th)1 development. In contrast, Le− variants escape binding to DCs and induce a strong Th1 cell response. In addition, in gastric biopsies challenged ex vivo with Le+ variants that bind DC-SIGN, interleukin 6 production is decreased, indicative of increased immune suppression. Our data indicate a role for LPS phase variation and Le antigen expression by H. pylori in suppressing immune responses through DC-SIGN.
Immunity | 2002
Nathalie Sol-Foulon; Arnaud Moris; Cinzia Nobile; Claire Boccaccio; Anneke Engering; Jean-Pierre Abastado; Jean-Michel Heard; Yvette van Kooyk; Olivier Schwartz
DC-SIGN, a dendritic cell (DC)-specific lectin, mediates clustering of DCs with T lymphocytes, a crucial event in the initiation of immune responses. DC-SIGN also binds HIV envelope glycoproteins, allowing efficient virus capture by DCs. We show here that DC-SIGN surface levels are upregulated in HIV-1-infected DCs. This process is caused by the viral protein Nef, which acts by inhibiting DC-SIGN endocytosis. Upregulation of DC-SIGN at the cell surface dramatically increases clustering of DCs with T lymphocytes and HIV-1 transmission. These results provide new insights into how HIV-1 spreads from DCs to T lymphocytes and manipulates immune responses. They help explain how Nef may act as a virulence factor in vivo.
Journal of Leukocyte Biology | 2002
Teunis B. H. Geijtenbeek; Anneke Engering; Yvette van Kooyk
Dendritic cells (DC) are present in essentially every tissue where they operate at the interface of innate and acquired immunity by recognizing pathogens and presenting pathogen‐derived peptides to T cells. It is becoming clear that not all C‐type lectins on DC serve as antigen receptors recognizing pathogens through carbohydrate structures. The C‐type lectin DC‐SIGN is unique in that it regulates adhesion processes, such as DC trafficking and T‐cell synapse formation, as well as antigen capture. Moreover, even though several C‐type lectins have been shown to bind HIV‐1, DC‐SIGN does not only capture HIV‐1 but also protects it in early endosomes allowing HIV‐1 transport by DC to lymphoid tissues, where it enhances trans infection of T cells. Here we discuss the carbohydrate/protein recognition profile and other features of DC‐SIGN that contribute to the potency of DC to control immunity.
Trends in Immunology | 2002
Anneke Engering; Teunis B. H. Geijtenbeek; Yvette van Kooyk
Dendritic cells (DCs) detect different pathogens and elicit tailored anti-microbial immune responses. They express C-type lectins that recognise carbohydrate profiles on microorganisms, resulting in internalisation, processing and presentation. Intracellular sequences of distinct DC-specific lectins point to differences in intracellular routing that influence antigen presentation. Moreover, putative signalling motifs hint to the activation of DCs on carbohydrate recognition. Recent evidence shows that not only pathogens, but also tumour antigens, exploit C-type lectins to escape intracellular degradation resulting in abortive immunity. More insight into ligand specificity, intracellular targeting and signalling will reveal the pathways by which pathogens modulate immunity through C-type lectins.
Advances in Experimental Medicine and Biology | 1997
Anneke Engering; Marina Cella; Donna M. Fluitsma; Elisabeth C. M. Hoefsmit; Antonio Lanzavecchia; Jean Pieters
In an immature state, dendritic cells (DC) can capture antigen via at least two mechanisms. First, DC use macropinocytosis for continuous uptake of large amounts of soluble antigens. Second, they express high levels of mannose receptor that can mediate internalization of glycosylated ligands. We found that dendritic cells can present mannosylated antigen 100-1000 fold more efficiently than non-mannosylated antigen. Immunocytochemistry as well as subcellular fractionation demonstrated that the mannose receptor and MHC class II molecules were located in distinct subcellular compartments. These results demonstrate that the mannose receptor endows DC with a high capacity to present glycosylated antigens at very low concentrations.
Journal of Immunology | 2007
Arunee Thitithanyanont; Anneke Engering; Peeraya Ekchariyawat; Suwimon Wiboon-ut; Amporn Limsalakpetch; Kosol Yongvanitchit; Utaiwan Kum-Arb; Watcharoot Kanchongkittiphon; Pongsak Utaisincharoen; Stitaya Sirisinha; Pilaipan Puthavathana; Mark M. Fukuda; Sathit Pichyangkul
There is worldwide concern that the avian influenza H5N1 virus, with a mortality rate of >50%, might cause the next influenza pandemic. Unlike most other influenza infections, H5N1 infection causes a systemic disease. The underlying mechanisms for this effect are still unclear. In this study, we investigate the interplay between avian influenza H5N1 and human dendritic cells (DC). We showed that H5N1 virus can infect and replicate in monocyte-derived and blood myeloid DC, leading to cell death. These results suggest that H5N1 escapes viral-specific immunity, and could disseminate via DC. In contrast, blood pDC were resistant to infection and produced high amounts of IFN-α. Addition of this cytokine to monocyte-derived DC or pretreatment with TLR ligands protected against infection and the cytopathic effects of H5N1 virus.
American Journal of Pathology | 2004
Anneke Engering; Sandra J. van Vliet; Konnie Hebeda; David G. Jackson; Remko Prevo; Satwinder Kaur Singh; Teunis B. H. Geijtenbeek; Han van Krieken; Yvette van Kooyk
In the paracortex of lymph nodes, cellular immune responses are generated against antigens captured in peripheral tissues by dendritic cells (DCs). DC-SIGN (dendritic cell-specific ICAM-3 grabbing nonintegrin), a C-type lectin exclusively expressed by DCs, functions as an antigen receptor as well as an adhesion receptor. A functional homologue of DC-SIGN, L-SIGN (liver/lymph node-SIGN, also called DC-SIGN-related), is expressed by liver sinus endothelial cells. In lymph nodes, both DC-SIGN and L-SIGN are expressed. In this study, we analyzed the distribution of these two SIGN molecules in detail in both normal and immunoreactive lymph nodes. DC-SIGN is expressed by mature DCs in paracortical areas and in addition by DCs with an immature phenotype in the outer zones of the paracortex. L-SIGN expression was also detected in the outer zones on sinus endothelial cells characterized by their expression of the lymphatic endothelial markers LYVE-1 and CLEVER-1. During both cellular and humoral immune responses changes in the amount of DC-SIGN+ immature and mature DCs and L-SIGN+ endothelial cells were observed, indicating that the influx or proliferation of these cells is dynamically regulated.
Veterinary Immunology and Immunopathology | 2008
Chutitorn Ketloy; Anneke Engering; Utaiwan Srichairatanakul; Amporn Limsalakpetch; Kosol Yongvanitchit; Sathit Pichyangkul; Kiat Ruxrungtham
Antigen presenting cells (APCs), especially dendritic cells (DCs), play a crucial role in immune responses against infections by sensing microbial invasion through Toll-like receptors (TLRs). In this regard, TLR ligands are attractive candidates for use in humans and animal models as vaccine adjuvants. So far, no studies have been performed on TLR expression in non-human primates such as rhesus macaques. Therefore, we studied the TLR expression patterns in different subsets of APC in rhesus macaques and compared them to similar APC subsets in human. Also, expression was compared with corresponding DC subsets from different organs from mice. Here we show by semi-quantitative RT-PCR, that blood DC subsets of rhesus macaque expressed the same sets of TLRs as those of human but substantially differed from mouse DC subsets. Macaque myeloid DCs (MDCs) expressed TLR3, 4, 7 and 8 whereas macaque plasmacytoid DCs (PDCs) expressed only TLR7 and 9. Additionally, TLR expression patterns in macaque monocyte-derived dendritic cells (mo-DCs) (i.e., TLR3, 4, 8 and 9), monocytes (i.e., TLR4, 7, and 8) and B cells (i.e., TLR4, 7, 8, and 9) were also similar to their human counterparts. However, the responsiveness of macaque APCs to certain TLR ligands partially differed from that of human in terms of phenotype differentiation and cytokine production. Strikingly, in contrast to human mo-DCs, no IL-12p70 production was observed when macaque mo-DCs were stimulated with TLR ligands. In addition, CD40 and CD86 phenotypic responses to TLR8 ligand (poly U) in mo-DCs of macaque were higher than that of human. Despite these functional differences, our results provide important information for a rational design of animal models in evaluating TLR ligands as adjuvant in vivo.