Anneleen Spooren
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anneleen Spooren.
Cellular and Molecular Life Sciences | 2011
Sarah Gerlo; Ron Kooijman; Ilse M. Beck; Krzysztof Kolmus; Anneleen Spooren; Guy Haegeman
It has been known for several decades that cyclic AMP (cAMP), a prototypical second messenger, transducing the action of a variety of G-protein-coupled receptor ligands, has potent immunosuppressive and anti-inflammatory actions. These actions have been attributed in part to the ability of cAMP-induced signals to interfere with the function of the proinflammatory transcription factor Nuclear Factor-kappaB (NF-κB). NF-κB plays a crucial role in switching on the gene expression of a plethora of inflammatory and immune mediators, and as such is one of the master regulators of the immune response and a key target for anti-inflammatory drug design. A number of fundamental molecular mechanisms, contributing to the overall inhibitory actions of cAMP on NF-κB function, are well established. Paradoxically, recent reports indicate that cAMP, via its main effector, the protein kinase A (PKA), also promotes NF-κB activity. Indeed, cAMP actions appear to be highly cell type- and context-dependent. Importantly, several novel players in the cAMP/NF-κB connection, which selectively direct cAMP action, have been recently identified. These findings not only open up exciting new research avenues but also reveal novel opportunities for the design of more selective, NF-κB-targeting, anti-inflammatory drugs.
Cellular Signalling | 2010
Anneleen Spooren; Ron Kooijman; Béatrice Lintermans; Kathleen Van Craenenbroeck; Linda Vermeulen; Guy Haegeman; Sarah Gerlo
Astrocytes are critical players in the innate immune response of the central nervous system. Upon encountering proinflammatory stimuli, astrocytes produce a plethora of inflammatory mediators. Here, we have investigated how beta(2)-adrenergic receptor activation modulates proinflammatory gene expression in astrocytes. We have observed that treatment of human 1321N1 astrocytes with the beta-adrenergic agonist isoproterenol synergistically enhanced TNF-alpha-induced expression of the cytokine IL-6. The effect of isoproterenol was cAMP-dependent and mediated by the beta(2)-adrenergic subtype. Using pharmacological inhibitors and siRNA we showed that protein kinase A (PKA) is an indispensable mediator of the synergy. Simultaneous induction with isoproterenol and TNF-alpha was moreover associated with combined recruitment of CREB and p65 to the native IL-6 promoter. The role of CREB and NFkappaB in promoting the synergy was corroborated using IL-6 promoter point mutants, as well as via siRNA-mediated silencing of CREB and NFkappaB. Interestingly, whereas CREB and NFkappaB usually compete for the limiting cofactor CREB binding protein (CBP), we detected enhanced recruitment of CBP at the IL-6 promoter in our system. The transcriptional synergy seems to be a gene specific process, occurring at the IL-6 and COX-2 gene, but not at other typical NFkappaB-dependent genes such as IL-8, ICAM-1 or VCAM-1. As astrocytic IL-6 overexpression has been associated with neuroinflammatory and neurodegenerative processes, our findings might have important physiological consequences.
Progress in Neurobiology | 2010
Guy Laureys; Ralph Clinckers; Sarah Gerlo; Anneleen Spooren; Nadine Wilczak; Ron Kooijman; Ilse Smolders; Yvette Michotte; Jacques De Keyser
Evidence accumulates for a key role of the beta(2)-adrenergic receptors in the many homeostatic and neuroprotective functions of astrocytes, including glycogen metabolism, regulation of immune responses, release of neurotrophic factors, and the astrogliosis that occurs in response to neuronal injury. A dysregulation of the astrocytic beta(2)-adrenergic-pathway is suspected to contribute to the physiopathology of a number of prevalent and devastating neurological conditions such as multiple sclerosis, Alzheimers disease, human immunodeficiency virus encephalitis, stroke and hepatic encephalopathy. In this review we focus on the physiological functions of astrocytic beta(2)-adrenergic receptors, and their possible impact in disease states.
Cellular Signalling | 2010
Anneleen Spooren; Pieter Rondou; Katarzyna Debowska; Béatrice Lintermans; Linda Vermeulen; Bart Samyn; Kamila Skieterska; Griet Debyser; Bart Devreese; Peter Vanhoenacker; Urszula Wojda; Guy Haegeman; Kathleen Van Craenenbroeck
Dopamine receptors are G-protein-coupled receptors involved in the control of motivation, learning, and fine-tuning of motor movement, as well as modulation of neuroendocrine signalling. Stimulation of G-protein-coupled receptors normally results in attenuation of signalling through desensitization, followed by internalization and down-regulation of the receptor. These processes allow the cell to regain homeostasis after exposure to extracellular stimuli and offer protection against excessive signalling. Here, we have investigated the agonist-mediated attenuation properties of the dopamine D4 receptor. We found that several hallmarks of signal attenuation such as receptor phosphorylation, internalization and degradation showed a blunted response to agonist treatment. Moreover, we did not observe recruitment of beta-arrestins upon D4 receptor stimulation. We also provide evidence for the constitutive phosphorylation of two serine residues in the third intracellular loop of the D4 receptor. These data demonstrate that, when expressed in CHO, HeLa and HEK293 cells, the human D4 receptor shows resistance to agonist-mediated internalization and down-regulation. Data from neuronal cell lines, which have been reported to show low endogenous D4 receptor expression, such as the hippocampal cell line HT22 and primary rat hippocampal cells, further support these observations.
BioMed Research International | 2010
Anneleen Spooren; Krzysztof Kolmus; Linda Vermeulen; Karlien Van Wesemael; Guy Haegeman; Sarah Gerlo
The transcription factor nuclear factor kappaB (NF-κB) is one of the central mediators of inflammatory gene expression. Several posttranslational modifications of NF-κB, regulating its transactivation ability, have been described. Especially phosphorylation of the NF-κB subunit p65 has been investigated in depth and several commercial phosphospecific antibodies, targeting selected p65 residues, are available. One of the p65 residues, that is subject to phosphorylation by protein kinase A (PKA) as well as by mitogen-stimulated kinase-1 (MSK-1), is the serine at position 276. Here, we have performed a detailed analysis of the performance of the most commonly used commercial anti-P-p65 Ser276 antibodies. Our findings indicate that at least three widely used anti-P-p65 Ser276 antibodies do not detect p65 in vivo via Western Blot, but instead crossreact with PKA-regulated proteins. As PKA is one of the main kinases responsible for phosphorylation of p65 at Ser276, this observation warrants cautious interpretation of data generated using the tested antibodies.
Brain Research Reviews | 2011
Anneleen Spooren; Krzysztof Kolmus; Guy Laureys; Ralph Clinckers; Jacques De Keyser; Guy Haegeman; Sarah Gerlo
Biochemical Pharmacology | 2011
Anneleen Spooren; Pieter Mestdagh; Pieter Rondou; Krzysztof Kolmus; Guy Haegeman; Sarah Gerlo
Journal of Neuroinflammation | 2014
Guy Laureys; Sarah Gerlo; Anneleen Spooren; Frauke Demol; Jacques De Keyser; Joeri L. Aerts
Cytokine | 2015
Sarah Gerlo; Guy Laureys; Anneleen Spooren; Krzysztof Kolmus; Jacques De Keyser; Joeri L. Aerts; Jan Tavernier
Archive | 2011
Anneleen Spooren