Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anneli Björklund is active.

Publication


Featured researches published by Anneli Björklund.


The American Journal of Clinical Nutrition | 2013

Consumption of whole grain reduces risk of deteriorating glucose tolerance, including progression to prediabetes

Tina Wirström; Agneta Hilding; Harvest F. Gu; Claes-Göran Östenson; Anneli Björklund

BACKGROUND High whole-grain intake has been reportedly associated with reduced risk of developing type 2 diabetes (T2D), which is an effect possibly subject to genetic effect modification. Confirmation in prospective studies and investigations on the impact on prediabetes is needed. OBJECTIVES In a prospective population-based study, we investigated whether a higher intake of whole grain protects against the development of prediabetes and T2D and tested for modulation by polymorphisms of the TCF7L2 gene. DESIGN We examined the 8-10-y incidence of prediabetes (impaired glucose tolerance, impaired fasting glucose, or the combination of both) and T2D in relation to the intake of whole grain. Baseline data were available for 3180 women and 2297 men aged 35-56 y. RESULTS A higher intake of whole grain (>59.1 compared with <30.6 g/d) was associated with a 34% lower risk to deteriorate in glucose tolerance (to prediabetes or T2D; women and men combined). The association remained after adjustments for age, family history of diabetes, BMI, physical activity, smoking, education, and blood pressure (OR: 0.78; 95% CI: 0.63, 0.96). Risk reduction was significant in men (OR: 0.65; 95% CI: 0.49, 0.85) but not in women. Associations were significant for prediabetes per se (all, OR: 0.73; 95% CI: 0.56, 0.94; men, OR: 0.57; 95% CI: 0.40, 0.80). The intake of whole grain correlated inversely with insulin resistance (HOMA-IR). The impact of whole-grain intake was undetectable in men who harbored diabetogenic polymorphisms of the TCF7L2 gene. CONCLUSIONS A higher intake of whole grain is associated with decreased risk of deteriorating glucose tolerance including progression from normal glucose tolerance to prediabetes by mechanisms likely tied to effects on insulin sensitivity. Effect modifications by TCF7L2 genetic polymorphisms are supported.


Biochimica et Biophysica Acta | 2010

Facilitation of fatty acid uptake by CD36 in insulin-producing cells reduces fatty-acid-induced insulin secretion and glucose regulation of fatty acid oxidation.

Tina Wallin; Zuheng Ma; Hirotaka Ogata; Ingrid Hals Jørgensen; Mariella Iezzi; Haiyan Wang; Claes B. Wollheim; Anneli Björklund

Facilitation of fatty acid uptake in beta cells could potentially affect beta cell metabolism and secretory function; however such effects have not been clearly documented. CD36 facilitates uptake of fatty acids (FA) in muscle and adipose tissue and is likely to exert a similar effect in beta cells. We investigated the impact of over-expressing CD36 on fatty acid uptake and beta cell function by a Tet-on system in INS-1 cells. Doxycycline dose-dependently increased the CD36 protein with localization mainly in the cell membrane. Over-expression increased both specific uptake and efflux of oleate whereas intracellular glycerides were only marginally increased and incorporation of 14C-oleate or -palmitate into di- or triglycerides not affected. The normal potentiation of glucose-induced insulin secretion by acute addition of FA (50-100 micromol/l oleate and palmitate) was lost and the normal inhibitory effect of high glucose both on oleate oxidation and on the activity of carnitine palmitoyltransferase I was reduced. Over-expression did not induce apoptosis. We conclude that induction of the CD36 transporter increases uptake of FA, the consequences of which are blunting of the functional interplay between glucose and FA on insulin secretion and oxidative metabolism.


Diabetes | 2007

Effects of Diazoxide on Gene Expression in Rat Pancreatic Islets Are Largely Linked to Elevated Glucose and Potentially Serve to Enhance β-Cell Sensitivity

Zuheng Ma; Neil Portwood; David Brodin; Valdemar Grill; Anneli Björklund

Diazoxide enhances glucose-induced insulin secretion from β-cells through mechanisms that are not fully elucidated. Here, we used microarray analysis (Affymetrix) to investigate effects of diazoxide. Pancreatic islets were cultured overnight at 27, 11, or 5.5 mmol/l glucose with or without diazoxide. Inclusion of diazoxide upregulated altogether 211 genes (signal log2 ratio ≥0.5) and downregulated 200 genes (signal log2 ratio −0.5 or lower), and 92% of diazoxides effects (up- and downregulation) were observed only after coculture with 11 or 27 mmol/l glucose. We found that 11 mmol/l diazoxide upregulated 97 genes and downregulated 21 genes. Increasing the glucose concentration to 27 mmol/l markedly shifted these proportions toward downregulation (101 genes upregulated and 160 genes downregulated). At 27 mmol/l glucose, most genes downregulated by diazoxide were oppositely affected by glucose (80%). Diazoxide influenced expression of several genes central to β-cell metabolism. Diazoxide downregulated genes of fatty acid oxidation, upregulated genes of fatty acid synthesis, and downregulated uncoupling protein 2 and lactic acid dehydrogenase. Diazoxide upregulated certain genes known to support β-cell functionality, such as NKX6.1 and PDX1. Long-term elevated glucose is permissive for most of diazoxides effects on gene expression, the proportion of effects shifting to downregulation with increasing glucose concentration. Effects of diazoxide on gene expression could serve to enhance β-cell functionality during continuous hyperglycemia.


Islets | 2012

Diabetes reduces β-cell mitochondria and induces distinct morphological abnormalities, which are reproducible by high glucose in vitro with attendant dysfunction.

Zuheng Ma; Tina Wirström; L. A. Håkan Borg; Gerd Larsson-Nyrén; Ingrid Hals; John Bondo-Hansen; Valdemar Grill; Anneli Björklund

We investigated the impact of a diabetic state with hyperglycemia on morphometry of β cell mitochondria and modifying influence of a K+-ATP channel opener and we related in vivo findings with glucose effects in vitro. For in vivo experiments islets from syngeneic rats were transplanted under the kidney capsule to neonatally streptozotocin-diabetic or non-diabetic recipients. Diabetic recipients received vehicle, or tifenazoxide (NN414), intragastrically for 9 weeks. Non-diabetic rats received vehicle. Transplants were excised 7 d after cessation of treatment (wash-out) and prepared for electron microscopy. Morphological parameters were measured from approx. 25,000 mitochondria. Rat islets were cultured in vitro for 2–3 weeks at 27 or 11 (control) mmol/l glucose. Transplants to diabetic rats displayed decreased numbers of mitochondria (-31%, p < 0.05), increased mitochondrial volume and increased mitochondrial outer surface area, p < 0.001. Diabetes increased variability in mitochondrial size with frequent appearance of mega-mitochondria. Tifenazoxide partly normalized diabetes-induced effects, and mega-mitochondria disappeared. Long-term culture of islets at 27 mmol/l glucose reproduced the in vivo morphological abnormalities. High-glucose culture was also associated with reduced ATP and ADP contents, reduced oxygen consumption, reduced signaling by MitoTracker Red and reduction of mitochondrial proteins (complexes I–IV), OPA 1 and glucose-induced insulin release. We conclude that (1) a long-term diabetic state leads to a reduced number of mitochondria and to distinct morphological abnormalities which are replicated by high glucose in vitro; (2) the morphological abnormalities are coupled to dysfunction; (3) K+-ATP channel openers may have potential to partly reverse glucose-induced effects.


Biochemical and Biophysical Research Communications | 2014

Hyperoxia inhibits glucose-induced insulin secretion and mitochondrial metabolism in rat pancreatic islets.

Zuheng Ma; Noah Moruzzi; Sergiu-Bogdan Catrina; Valdemar Grill; Anneli Björklund

Isolated pancreatic islets containing the insulin-producing beta cells are devoid of circulation. They may therefore experience hypoxia with possible negative effects on beta cell function and survival. We investigated (1) whether hyperoxia in vitro would be beneficial by counteracting putative effects of lost circulation and, further, (2) whether previous hyperoxia would attenuate the impact of subsequently induced severe hypoxia. Islets from Sprague-Dawley rats were exposed to 95% O2 for 18 h. This hyperoxic exposure diminished glucose-induced insulin secretion by 47% and inhibited oxygen consumption by 39-41%. Mitochondrial complexes I-III were decreased by 29-37%. Negative effects on insulin secretion and complexes III and IV waned after a 22 h period of normoxia following hyperoxia whereas complexes I and II were still diminished, ROS production was increased and rates of apoptosis tended to be increased (P=0.07). The effects of previous hyperoxia on susceptibility to damage by subsequent hypoxia were tested after 5.5h of 0.8% O2. Previous hyperoxia did not affect hypoxia-induced enhancement of HIF-1 alpha but modestly and significantly attenuated hypoxia-induced decreases in insulin contents. We conclude that hyperoxia exerts largely negative effects on beta cells, effects which are functional and possibly also toxic. A paradoxical positive finding (attenuation of hypoxia-induced effects) could be secondary to a protective effect of the hyperoxia-induced reduction of oxidative metabolism.


PLOS ONE | 2013

Preconditioning with Associated Blocking of Ca2+ Inflow Alleviates Hypoxia-Induced Damage to Pancreatic β-Cells

Zuheng Ma; Noah Moruzzi; Sergiu Bogdan Catrina; Ingrid Hals; Jose Oberholzer; Valdemar Grill; Anneli Björklund

Objective Beta cells of pancreatic islets are susceptible to functional deficits and damage by hypoxia. Here we aimed to characterize such effects and to test for and pharmacological means to alleviate a negative impact of hypoxia. Methods and Design Rat and human pancreatic islets were subjected to 5.5 h of hypoxia after which functional and viability parameters were measured subsequent to the hypoxic period and/or following a 22 h re-oxygenation period. Preconditioning with diazoxide or other agents was usually done during a 22 h period prior to hypoxia. Results Insulin contents decreased by 23% after 5.5 h of hypoxia and by 61% after a re-oxygenation period. Preconditioning with diazoxide time-dependently alleviated these hypoxia effects in rat and human islets. Hypoxia reduced proinsulin biosynthesis (3H-leucine incorporation into proinsulin) by 35%. Preconditioning counteracted this decrease by 91%. Preconditioning reduced hypoxia-induced necrosis by 40%, attenuated lowering of proteins of mitochondrial complexes I–IV and enhanced stimulation of HIF-1-alpha and phosphorylated AMPK proteins. Preconditioning by diazoxide was abolished by co-exposure to tolbutamide or elevated potassium (i.e. conditions which increase Ca2+ inflow). Preconditioning with nifedipine, a calcium channel blocker, partly reproduced effects of diazoxide. Both diazoxide and nifedipine moderately reduced basal glucose oxidation whereas glucose-induced oxygen consumption (tested with diazoxide) was unaffected. Preconditioning with diaxoxide enhanced insulin contents in transplants of rat islets to non-diabetic rats and lowered hyperglycemia vs. non-preconditioned islets in streptozotocin-diabetic rats. Preconditioning of human islet transplants lowered hyperglycemia in streptozotocin-diabetic nude mice. Conclusions 1) Prior blocking of Ca2+ inflow associates with lesser hypoxia-induced damage, 2) preconditioning affects basal mitochondrial metabolism and accelerates activation of hypoxia-reactive and potentially protective factors, 3) results indicate that preconditioning by K+-ATP-channel openers has therapeutic potential for islet transplantations.


PLOS ONE | 2015

Mitochondrial Respiration in Insulin-Producing β-Cells: General Characteristics and Adaptive Effects of Hypoxia

Ingrid Katrin Hals; Simon Gustafson Bruerberg; Zuheng Ma; Hanne Scholz; Anneli Björklund; Valdemar Grill

Objective To provide novel insights on mitochondrial respiration in β-cells and the adaptive effects of hypoxia. Methods and Design Insulin-producing INS-1 832/13 cells were exposed to 18 hours of hypoxia followed by 20–22 hours re-oxygenation. Mitochondrial respiration was measured by high-resolution respirometry in both intact and permeabilized cells, in the latter after establishing three functional substrate-uncoupler-inhibitor titration (SUIT) protocols. Concomitant measurements included proteins of mitochondrial complexes (Western blotting), ATP and insulin secretion. Results Intact cells exhibited a high degree of intrinsic uncoupling, comprising about 50% of oxygen consumption in the basal respiratory state. Hypoxia followed by re-oxygenation increased maximal overall respiration. Exploratory experiments in peremabilized cells could not show induction of respiration by malate or pyruvate as reducing substrates, thus glutamate and succinate were used as mitochondrial substrates in SUIT protocols. Permeabilized cells displayed a high capacity for oxidative phosphorylation for both complex I- and II-linked substrates in relation to maximum capacity of electron transfer. Previous hypoxia decreased phosphorylation control of complex I-linked respiration, but not in complex II-linked respiration. Coupling control ratios showed increased coupling efficiency for both complex I- and II-linked substrates in hypoxia-exposed cells. Respiratory rates overall were increased. Also previous hypoxia increased proteins of mitochondrial complexes I and II (Western blotting) in INS-1 cells as well as in rat and human islets. Mitochondrial effects were accompanied by unchanged levels of ATP, increased basal and preserved glucose-induced insulin secretion. Conclusions Exposure of INS-1 832/13 cells to hypoxia, followed by a re-oxygenation period increases substrate-stimulated respiratory capacity and coupling efficiency. Such effects are accompanied by up-regulation of mitochondrial complexes also in pancreatic islets, highlighting adaptive capacities of possible importance in an islet transplantation setting. Results also indicate idiosyncrasies of β-cells that do not respire in response to a standard inclusion of malate in SUIT protocols.


PLOS ONE | 2011

Evidence for Presence and Functional Effects of Kv1.1 Channels in β-Cells: General Survey and Results from mceph/mceph Mice

Zuheng Ma; Catharina Lavebratt; Malin Almgren; Neil Portwood; Lars Forsberg; Robert Bränström; Erik Berglund; Sture Falkmer; F. Sundler; Nils Wierup; Anneli Björklund

Background Voltage-dependent K+ channels (Kv) mediate repolarisation of β-cell action potentials, and thereby abrogate insulin secretion. The role of the Kv1.1 K+ channel in this process is however unclear. We tested for presence of Kv1.1 in different species and tested for a functional role of Kv1.1 by assessing pancreatic islet function in BALB/cByJ (wild-type) and megencephaly (mceph/mceph) mice, the latter having a deletion in the Kv1.1 gene. Methodology/Principal Findings Kv1.1 expression was detected in islets from wild-type mice, SD rats and humans, and expression of truncated Kv1.1 was detected in mceph/mceph islets. Full-length Kv1.1 protein was present in islets from wild-type mice, but, as expected, not in those from mceph/mceph mice. Kv1.1 expression was localized to the β-cell population and also to α- and δ-cells, with evidence of over-expression of truncated Kv1.1 in mceph/mceph islets. Blood glucose, insulin content, and islet morphology were normal in mceph/mceph mice, but glucose-induced insulin release from batch-incubated islets was (moderately) higher than that from wild-type islets. Reciprocal blocking of Kv1.1 by dendrotoxin-K increased insulin secretion from wild-type but not mceph/mceph islets. Glucose-induced action potential duration, as well as firing frequency, was increased in mceph/mceph mouse β-cells. This duration effect on action potential in β-cells from mceph/mceph mice was mimicked by dendrotoxin-K in β-cells from wild-type mice. Observations concerning the effects of both the mceph mutation, and of dendrotoxin-K, on glucose-induced insulin release were confirmed in pancreatic islets from Kv1.1 null mice. Conclusion/Significance Kv1.1 channels are expressed in the β-cells of several species, and these channels can influence glucose-stimulated insulin release.


Diabetes | 2015

Toll-Like Receptor 3 Influences Glucose Homeostasis and β-Cell Insulin Secretion

Daniela Strodthoff; Zuheng Ma; Tina Wirström; Rona J. Strawbridge; Daniel F.J. Ketelhuth; David Engel; Robert Clarke; Sture Falkmer; Anders Hamsten; Göran K. Hansson; Anneli Björklund; Anna M. Lundberg

Toll-like receptors (TLRs) have been implicated in the pathogenesis of type 2 diabetes. We examined the function of TLR3 in glucose metabolism and type 2 diabetes–related phenotypes in animals and humans. TLR3 is highly expressed in the pancreas, suggesting that it can influence metabolism. Using a diet-induced obesity model, we show that TLR3-deficient mice had enhanced glycemic control, facilitated by elevated insulin secretion. Despite having high insulin levels, Tlr3−/− mice did not experience disturbances in whole-body insulin sensitivity, suggesting that they have a robust metabolic system that manages increased insulin secretion. Increase in insulin secretion was associated with upregulation of islet glucose phosphorylation as well as exocytotic protein VAMP-2 in Tlr3−/− islets. TLR3 deficiency also modified the plasma lipid profile, decreasing VLDL levels due to decreased triglyceride biosynthesis. Moreover, a meta-analysis of two healthy human populations showed that a missense single nucleotide polymorphism in TLR3 (encoding L412F) was linked to elevated insulin levels, consistent with our experimental findings. In conclusion, our results increase the understanding of the function of innate receptors in metabolic disorders and implicate TLR3 as a key control system in metabolic regulation.


International Journal of Experimental Diabetes Research | 2002

Type 2 Diabetes—Effect of Compensatory Oversecretion as a Reason for β-Cell Collapse

Valdemar Grill; Anneli Björklund

Insulin secretion declines progressively before and during the course of type 2 diabetes. Evidence indicates that this process is, in part, secondary to increased requirement for insulin secretion that is brought about by insulin resistance and by hyperglycemia. The effects of over-secretion extend far beyond a mere reduction of available insulin stores and may cause not only functional but also structural damage. The time is ripe for clinical studies, which explore the therapeutic potential of reducing over-secretion.

Collaboration


Dive into the Anneli Björklund's collaboration.

Top Co-Authors

Avatar

Zuheng Ma

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar

Valdemar Grill

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ingrid Hals

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Neil Portwood

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Tina Wirström

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Hanne Scholz

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar

Hirotaka Ogata

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge