Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anneli Cooper is active.

Publication


Featured researches published by Anneli Cooper.


The Journal of Infectious Diseases | 2007

Spatially and Genetically Distinct African Trypanosome Virulence Variants Defined by Host Interferon-γ Response

Lorna MacLean; Martin Odiit; Annette MacLeod; Liam J. Morrison; Lindsay Sweeney; Anneli Cooper; Peter G. E. Kennedy; Jeremy M. Sternberg

We describe 2 spatially distinct foci of human African trypanosomiasis in eastern Uganda. The Tororo and Soroti foci of Trypanosoma brucei rhodesiense infection were genetically distinct as characterized by 6 microsatellite and 1 minisatellite polymorphic markers and were characterized by differences in disease progression and host-immune response. In particular, infections with the Tororo genotype exhibited an increased frequency of progression to and severity of the meningoencephalitic stage and higher plasma interferon (IFN)- gamma concentration, compared with those with the Soroti genotype. We propose that the magnitude of the systemic IFN- gamma response determines the time at which infected individuals develop central nervous system infection and that this is consistent with the recently described role of IFN- gamma in facilitating blood-brain barrier transmigration of trypanosomes in an experimental model of infection. The identification of trypanosome isolates with differing disease progression phenotypes provides the first field-based genetic evidence for virulence variants in T. brucei rhodesiense.


eLife | 2016

The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes

Paul Capewell; Christelle Cren-Travaillé; Francesco Marchesi; Pamela Johnston; Caroline Clucas; Robert A. Benson; Taylor-Anne Gorman; Estefania Calvo-Alvarez; Aline Crouzols; Grégory Jouvion; Vincent Jamonneau; William Weir; M. Lynn Stevenson; Kerry O'Neill; Anneli Cooper; Nono-raymond Kuispond Swar; Bruno Bucheton; Dieudonné Mumba Ngoyi; Paul Garside; Brice Rotureau; Annette MacLeod

The role of mammalian skin in harbouring and transmitting arthropod-borne protozoan parasites has been overlooked for decades as these pathogens have been regarded primarily as blood-dwelling organisms. Intriguingly, infections with low or undetected blood parasites are common, particularly in the case of Human African Trypanosomiasis caused by Trypanosoma brucei gambiense. We hypothesise, therefore, the skin represents an anatomic reservoir of infection. Here we definitively show that substantial quantities of trypanosomes exist within the skin following experimental infection, which can be transmitted to the tsetse vector, even in the absence of detectable parasitaemia. Importantly, we demonstrate the presence of extravascular parasites in human skin biopsies from undiagnosed individuals. The identification of this novel reservoir requires a re-evaluation of current diagnostic methods and control policies. More broadly, our results indicate that transmission is a key evolutionary force driving parasite extravasation that could further result in tissue invasion-dependent pathology. DOI: http://dx.doi.org/10.7554/eLife.17716.001


PLOS Pathogens | 2013

The TgsGP Gene Is Essential for Resistance to Human Serum in Trypanosoma brucei gambiense

Paul Capewell; Caroline Clucas; Eric DeJesus; Rudo Kieft; Stephen L. Hajduk; Nicola Veitch; Pieter Steketee; Anneli Cooper; William Weir; Annette MacLeod

Trypanosoma brucei gambiense causes 97% of all cases of African sleeping sickness, a fatal disease of sub-Saharan Africa. Most species of trypanosome, such as T. b. brucei, are unable to infect humans due to the trypanolytic serum protein apolipoprotein-L1 (APOL1) delivered via two trypanosome lytic factors (TLF-1 and TLF-2). Understanding how T. b. gambiense overcomes these factors and infects humans is of major importance in the fight against this disease. Previous work indicated that a failure to take up TLF-1 in T. b. gambiense contributes to resistance to TLF-1, although another mechanism is required to overcome TLF-2. Here, we have examined a T. b. gambiense specific gene, TgsGP, which had previously been suggested, but not shown, to be involved in serum resistance. We show that TgsGP is essential for resistance to lysis as deletion of TgsGP in T. b. gambiense renders the parasites sensitive to human serum and recombinant APOL1. Deletion of TgsGP in T. b. gambiense modified to uptake TLF-1 showed sensitivity to TLF-1, APOL1 and human serum. Reintroducing TgsGP into knockout parasite lines restored resistance. We conclude that TgsGP is essential for human serum resistance in T. b. gambiense.


Genome Biology | 2008

Genetic analysis of the human infective trypanosome Trypanosoma brucei gambiense: chromosomal segregation, crossing over, and the construction of a genetic map

Anneli Cooper; Andy Tait; Lindsay Sweeney; Alison Tweedie; Liam J. Morrison; C. Michael R. Turner; Annette MacLeod

BackgroundTrypanosoma brucei is the causative agent of human sleeping sickness and animal trypanosomiasis in sub-Saharan Africa, and it has been subdivided into three subspecies: Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, which cause sleeping sickness in humans, and the nonhuman infective Trypanosoma brucei brucei. T. b. gambiense is the most clinically relevant subspecies, being responsible for more than 90% of all trypanosomal disease in humans. The genome sequence is now available, and a Mendelian genetic system has been demonstrated in T. brucei, facilitating genetic analysis in this diploid protozoan parasite. As an essential step toward identifying loci that determine important traits in the human-infective subspecies, we report the construction of a high-resolution genetic map of the STIB 386 strain of T. b. gambiense.ResultsThe genetic map was determined using 119 microsatellite markers assigned to the 11 megabase chromosomes. The total genetic map length of the linkage groups was 733.1 cM, covering a physical distance of 17.9 megabases with an average map unit size of 24 kilobases/cM. Forty-seven markers in this map were also used in a genetic map of the nonhuman infective T. b. brucei subspecies, permitting comparison of the two maps and showing that synteny is conserved between the two subspecies.ConclusionThe genetic linkage map presented here is the first available for the human-infective trypanosome T. b. gambiense. In combination with the genome sequence, this opens up the possibility of using genetic analysis to identify the loci responsible for T. b. gambiense specific traits such as human infectivity as well as comparative studies of parasite field populations.


eLife | 2016

Population genomics reveals the origin and asexual evolution of human infective trypanosomes

William Weir; Paul Capewell; Bernardo J. Foth; Caroline Clucas; Andrew Pountain; Pieter Steketee; Nicola Veitch; Mathurin Koffi; Thierry De Meeûs; Jacques Kaboré; Mamadou Camara; Anneli Cooper; Andy Tait; Vincent Jamonneau; Bruno Bucheton; Matthew Berriman; Annette MacLeod

Evolutionary theory predicts that the lack of recombination and chromosomal re-assortment in strictly asexual organisms results in homologous chromosomes irreversibly accumulating mutations and thus evolving independently of each other, a phenomenon termed the Meselson effect. We apply a population genomics approach to examine this effect in an important human pathogen, Trypanosoma brucei gambiense. We determine that T.b. gambiense is evolving strictly asexually and is derived from a single progenitor, which emerged within the last 10,000 years. We demonstrate the Meselson effect for the first time at the genome-wide level in any organism and show large regions of loss of heterozygosity, which we hypothesise to be a short-term compensatory mechanism for counteracting deleterious mutations. Our study sheds new light on the genomic and evolutionary consequences of strict asexuality, which this pathogen uses as it exploits a new biological niche, the human population. DOI: http://dx.doi.org/10.7554/eLife.11473.001


PLOS Neglected Tropical Diseases | 2013

Population genetics of Trypanosoma brucei rhodesiense: clonality and diversity within and between foci.

Craig W. Duffy; Lorna MacLean; Lindsay Sweeney; Anneli Cooper; C. Michael R. Turner; Andy Tait; Jeremy M. Sternberg; Liam J. Morrison; Annette MacLeod

African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda) and Southern (Malawi) Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics.


Parasitology | 2015

A co-evolutionary arms race: trypanosomes shaping the human genome, humans shaping the trypanosome genome

Paul Capewell; Anneli Cooper; Caroline Clucas; William Weir; Annette MacLeod

SUMMARY Trypanosoma brucei is the causative agent of African sleeping sickness in humans and one of several pathogens that cause the related veterinary disease Nagana. A complex co-evolution has occurred between these parasites and primates that led to the emergence of trypanosome-specific defences and counter-measures. The first line of defence in humans and several other catarrhine primates is the trypanolytic protein apolipoprotein-L1 (APOL1) found within two serum protein complexes, trypanosome lytic factor 1 and 2 (TLF-1 and TLF-2). Two sub-species of T. brucei have evolved specific mechanisms to overcome this innate resistance, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. In T. b. rhodesiense, the presence of the serum resistance associated (SRA) gene, a truncated variable surface glycoprotein (VSG), is sufficient to confer resistance to lysis. The resistance mechanism of T. b. gambiense is more complex, involving multiple components: reduction in binding affinity of a receptor for TLF, increased cysteine protease activity and the presence of the truncated VSG, T. b. gambiense-specific glycoprotein (TgsGP). In a striking example of co-evolution, evidence is emerging that primates are responding to challenge by T. b. gambiense and T. b. rhodesiense, with several populations of humans and primates displaying resistance to infection by these two sub-species.


eLife | 2017

APOL1 renal risk variants have contrasting resistance and susceptibility associations with African trypanosomiasis

Anneli Cooper; Hamidou Ilboudo; V Pius Alibu; Sophie Ravel; John Enyaru; William Weir; Harry Noyes; Paul Capewell; Mamadou Camara; Jacqueline Milet; Vincent Jamonneau; Oumou Camara; Enock Matovu; Bruno Bucheton; Annette MacLeod

Reduced susceptibility to infectious disease can increase the frequency of otherwise deleterious alleles. In populations of African ancestry, two apolipoprotein-L1 (APOL1) variants with a recessive kidney disease risk, named G1 and G2, occur at high frequency. APOL1 is a trypanolytic protein that confers innate resistance to most African trypanosomes, but not Trypanosoma brucei rhodesiense or T.b. gambiense, which cause human African trypanosomiasis. In this case-control study, we test the prevailing hypothesis that these APOL1 variants reduce trypanosomiasis susceptibility, resulting in their positive selection in sub-Saharan Africa. We demonstrate a five-fold dominant protective association for G2 against T.b. rhodesiense infection. Furthermore, we report unpredicted strong opposing associations with T.b. gambiense disease outcome. G2 associates with faster progression of T.b. gambiense trypanosomiasis, while G1 associates with asymptomatic carriage and undetectable parasitemia. These results implicate both forms of human African trypanosomiasis in the selection and persistence of otherwise detrimental APOL1 kidney disease variants. DOI: http://dx.doi.org/10.7554/eLife.25461.001


PLOS ONE | 2013

Human and Animal Trypanosomes in Cote d'Ivoire Form a Single Breeding Population

Paul Capewell; Anneli Cooper; Craig W. Duffy; Andy Tait; C. Michael R. Turner; Wendy Gibson; Dieter Mehlitz; Annette MacLeod

Background Trypanosoma brucei is the causative agent of African Sleeping Sickness in humans and contributes to the related veterinary disease, Nagana. T. brucei is segregated into three subspecies based on host specificity, geography and pathology. T. b. brucei is limited to animals (excluding some primates) throughout sub-Saharan Africa and is non-infective to humans due to trypanolytic factors found in human serum. T. b. gambiense and T. b. rhodesiense are human infective sub-species. T. b. gambiense is the more prevalent human, causing over 97% of human cases. Study of T. b. gambiense is complicated in that there are two distinct groups delineated by genetics and phenotype. The relationships between the two groups and local T. b. brucei are unclear and may have a bearing on the evolution of the human infectivity traits. Methodology/Principal Findings A collection of sympatric T. brucei isolates from Côte d’Ivoire, consisting of T. b. brucei and both groups of T. b. gambiense have previously been categorized by isoenzymes, RFLPs and Blood Incubation Infectivity Tests. These samples were further characterized using the group 1 specific marker, TgSGP, and seven microsatellites. The relationships between the T. b. brucei and T. b. gambiense isolates were determined using principal components analysis, neighbor-joining phylogenetics, STRUCTURE, FST, Hardy-Weinberg equilibrium and linkage disequilibrium. Conclusions/Significance Group 1 T. b. gambiense form a clonal genetic group, distinct from group 2 and T. b. brucei, whereas group 2 T. b. gambiense are genetically indistinguishable from local T. b. brucei. There is strong evidence for mating within and between group 2 T. b. gambiense and T. b. brucei. We found no evidence to support the hypothesis that group 2 T. b. gambiense are hybrids of group 1 and T. b. brucei, suggesting that human infectivity has evolved independently in groups 1 and 2 T. b. gambiense.


PLOS Neglected Tropical Diseases | 2016

A Primate APOL1 Variant That Kills Trypanosoma brucei gambiense

Anneli Cooper; Paul Capewell; Caroline Clucas; Nicola Veitch; William Weir; Russell Thomson; Jayne Raper; Annette MacLeod

Humans are protected against infection from most African trypanosomes by lipoprotein complexes present in serum that contain the trypanolytic pore-forming protein, Apolipoprotein L1 (APOL1). The human-infective trypanosomes, Trypanosoma brucei rhodesiense in East Africa and T. b. gambiense in West Africa have separately evolved mechanisms that allow them to resist APOL1-mediated lysis and cause human African trypanosomiasis, or sleeping sickness, in man. Recently, APOL1 variants were identified from a subset of Old World monkeys, that are able to lyse East African T. b. rhodesiense, by virtue of C-terminal polymorphisms in the APOL1 protein that hinder that parasite’s resistance mechanism. Such variants have been proposed as candidates for developing therapeutic alternatives to the unsatisfactory anti-trypanosomal drugs currently in use. Here we demonstrate the in vitro lytic ability of serum and purified recombinant protein of an APOL1 ortholog from the West African Guinea baboon (Papio papio), which is able to lyse examples of all sub-species of T. brucei including T. b. gambiense group 1 parasites, the most common agent of human African trypanosomiasis. The identification of a variant of APOL1 with trypanolytic ability for both human-infective T. brucei sub-species could be a candidate for universal APOL1-based therapeutic strategies, targeted against all pathogenic African trypanosomes.

Collaboration


Dive into the Anneli Cooper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy Tait

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Bucheton

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Vincent Jamonneau

Institut de recherche pour le développement

View shared research outputs
Researchain Logo
Decentralizing Knowledge